scholarly journals Identification of soybean (Glycine max [L.] Merr.) mutants and improved varieties having diverse drought tolerance character using SSR marker

Author(s):  
K Nugroho ◽  
M Kosmiatin ◽  
A Husni ◽  
I M Tasma ◽  
P Lestari
Author(s):  
Nishi Mishra ◽  
M.K. Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Neha Gupta ◽  
...  

Background: Soybean is a key crop that grants an imperative supply of oils and proteins to humans and animals; however, its productivity spectacularly diminished owing to the occurrence of drought stress. Methods: The present investigation was executed during Kharif 2018-2019 to recognize drought tolerant genotypes on the basis of an array of morpho-physiological traits. Morpho-physiological analysis among 53 genotypes divulged the existence of drought tolerance capability in studied genotypes.Result: On the basis of current findings, it can be concluded that drought stress retards the growth and metabolic activity of soybean genotypes. These parameters showed considerable amount of variability under drought stress at different growth stages in soybean. Among 53 soybean genotypes, four genotypes viz., JS97-52, AMS 2014-1, RVS-14 and NRC-147 was found to be drought tolerant.


2017 ◽  
Vol 58 (10) ◽  
pp. 1764-1776 ◽  
Author(s):  
Nan Wang ◽  
Wenxiao Zhang ◽  
Mengyin Qin ◽  
Shuo Li ◽  
Meng Qiao ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Evi Julianita Harahap ◽  
Rosmayanti Rosmayanti ◽  
Diana Sofia Hanafiah

SSR marker has some merits such as quickness, simplicity, rich polymorphism and stability, thus being widely applied in genetic diversity analysis, molecular map construction and gene mapping. the purpose of this study was to determine polymorpic test and heterozygosity in F4 soybean (Glycine max (L.) Merril) progeni saline resistant characters using SSR (Simple Sequence Repeats) markers. This research was conducted in Biomolecular Laboratory, Socfindo Seed Production Laboratory (SSPL), Kebun Bangun Bandar Village Martebing District Dolok Masihul Regency Serdang Bedagai on December-May 2017. The number of samples were used 44. The five SSR primers (QS080465, QS1101, QS1112, QS100011, and Sat_091) used were specific primers, with a band pattern that was clearly visible around one or two bands. The percentage of polymorphic primers (PLP) of these three populations is high, all populations with a PLP of 100% of the saline resistant character. The effective allele number (Ne) of  7,160 for the progeny population is lower than the number of observed alleles (Na) of 10,000 which means that many progeny individuals are homozygous. The expected heterozygosity (He) value of 0.854 in the progeny population was higher than the observed heterozygosity (Ho) value of 0.027. The overall average observed heterozygosity (Ho) was 0.009 lower than the overall expected heterozygosity (He) of 0.61. This means that each character has a low heterozygosity.Keywords: Progeny F4, soybean, SSR, saline resistant, polymorphic, heterozygosity


Euphytica ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 361-366 ◽  
Author(s):  
Myung Sik Kim ◽  
Min Jung Park ◽  
Woo Hyeun Jeong ◽  
Ki Chul Nam ◽  
Jong Il Chung

Sign in / Sign up

Export Citation Format

Share Document