scholarly journals Field Test and Numerical Analysis of Flexible Retaining Wall of Shoulder Geocell

Author(s):  
Zhe Pang
2014 ◽  
Vol 644-650 ◽  
pp. 5039-5045
Author(s):  
Xiao Yang ◽  
Guo Lin Yang

Based on reinforced earth retaining wall of green gabion which is built at the site of seventh project Shaoxing-Zhuji Expressway, the research for soil pressure in a cross section which locate at the site of K38+398kmare made by field test and numerical analysis. The horizontal and vertical earth pressure are studied in the construction, The pressures between field test and numerical analysis which depend on FLAC3D are rough similar. With increased of height in filling soil, the earth pressures on the wall toe in 3 direction such as horizon , vertical, 45°are increased ,and then gradually come to stability after construction. With increased of height in filling soil, the vertical earth pressures is increased, but the distribution for earth pressure at the same height is non-uniform. The horizontal earth pressure on the back of wall surface increases fast at first then decreases a little, which is a single peak-shaped, it distributes along the wall height in non-linear form, the maximum occurs at 1/3H. The result between field test and numerical model are different, because the flexible wall surface has a great affection on unload.


2021 ◽  
Vol 298 ◽  
pp. 123905
Author(s):  
Hong Xiao ◽  
Guangpeng Liu ◽  
Dongwei Yan ◽  
Yue Zhao ◽  
Jiaqi Wang ◽  
...  

2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Ali Arefnia ◽  
Khairul Anuar Kassim ◽  
Houman Sohaei ◽  
Kamarudin Ahmad ◽  
Ahmad Safuan A Rashid

 The failure mechanism of backfill material for retaining wall was studied by performing a numerical analysis using the finite element method. Kaolin is used as backfill material and retaining wall is constructed by Polymer Concrete. The laboratory data of an instrumented cantilever retaining wall are reexamined to confirm an experimental working hypothesis. The obtained laboratory data are the backfill settlement and horizontal displacement of the wall. The observed response demonstrates the backfill settlement and displacement of the retaining wall from the start to completion of loading. In conclusion, numerical modelling results based on computer programming by ABAQUS confirms the experimental results of the physical modelling.  


2013 ◽  
Vol 12 (2) ◽  
pp. 961-980 ◽  
Author(s):  
Seong-Bae Jo ◽  
Jeong-Gon Ha ◽  
Mintaek Yoo ◽  
Yun Wook Choo ◽  
Dong-Soo Kim

2018 ◽  
Vol 46 (3) ◽  
pp. 284-296 ◽  
Author(s):  
Fei Song ◽  
Huabei Liu ◽  
Liqiu Ma ◽  
Hongbing Hu

2018 ◽  
Vol 18 (3) ◽  
pp. 767-777 ◽  
Author(s):  
Young-Soo Park ◽  
Sehoon Kim ◽  
Namgyu Kim ◽  
Jong-Jae Lee

This article presents a method for evaluating the support condition of bridges. This is done by representing the aging and deteriorated supports as rotation springs with equivalent spring constants. Sensitivity analysis was performed to obtain a relationship between the spring constant and the bridge responses (deflections/slopes). From this relationship, measured bridge responses can be used to estimate the equivalent spring constants through interpolation. Numerical analysis was performed to check whether the method can be used to calculate equivalent spring constants. Then, the method was verified by performing laboratory tests on a scale model bridge and field test on an actual bridge. In both tests, spring constants were estimated using the proposed method and then verified by calculating the displacements and frequencies and comparing them to the measured values.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bo Li ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Jun Ren ◽  
Gaofeng Lu ◽  
...  

Based on the Yongdingmen Station of Beijing Metro, the underwater excavation method for deep foundation pit was introduced. This study constructed a numerical analysis model to analyze the performance of surface settlement and lateral wall deflection in the process of underwater excavation. Results showed that this method was better to control the surface settlement and lateral wall deflection compared with other dewatering excavations. In detail, most of the surface settlement was caused during the dry excavation stage and dewatering excavation stage while the deflection caused by underwater excavation only accounted for about 10% of the total settlement. Besides, the maximum settlement occurred 0.25∼0.5 H e behind the retaining wall and the value was 0.04% H e . Similar to the result of the surface settlement, most of the lateral wall deflection had been completed before the underwater excavation, which only caused about 7% of the total deflection. The maximum wall deflection and its location were approximately 0.06% H e and 0.5 H e , respectively. Moreover, a series of 3D numerical analyses were studied on the design parameters of the underwater excavation method. This study can be used as a reference for general performance and structural design of foundation pits with underwater excavation.


Author(s):  
Hachemi Djadouni ◽  
Habib Trouzine ◽  
António Gomes Correia ◽  
Tiago Filipe da Silva Miranda

Sign in / Sign up

Export Citation Format

Share Document