scholarly journals Low Level Electricity Production and COD Removal in Wastewater Using a Dual Chamber Microbial Fuel Cell with Pseudomonas Fluorescens as Biocatalyst

Author(s):  
M L Juliano ◽  
C S Yanuaria ◽  
A R Caparanga ◽  
L L Tayo
2017 ◽  
Vol 76 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Lei Xu ◽  
Yaqian Zhao ◽  
Tongyue Wang ◽  
Ranbin Liu ◽  
Fei Gao

To improve the sustainability of constructed wetlands (CWs), a novel tiered wetland system integrated with a microbial fuel cell (MFC) was developed in this study. Compared to the single stage CW, chemical oxygen demand (COD) removal efficiency was improved from 83.2% to 88.7%. More significantly, this tiered system significantly enhanced total nitrogen removal efficiency (an increase from 53.1% to 75.4%). In terms of MFC integration, a gradually decreased performance in electricity production was observed during its 3 months of operation (the voltage dropped from nearly 600 mV to less than 300 mV), which resulted in a reduction of power density from around 2 W/m3 to less than 0.5 W/m3. The deterioration in performance of the air-cathode is the main reason behind this, since the electrode potential of the cathode under open circuit reduced from 348.5 mV to 49.5 mV while the anode potential kept constant at around −400 mV. However, in spite of its electrical performance reduction, it was proved that MFC integration enhanced COD removal and the nitrification process. Further work is needed to improve the stability and feasibility of this new system.


2011 ◽  
Vol 64 (4) ◽  
pp. 917-922 ◽  
Author(s):  
M. Behera ◽  
S. S. R. Murthy ◽  
M. M. Ghangrekar

The performance of dual chambered mediator-less microbial fuel cell (MFC) operated under batch mode was evaluated under different operating temperatures, ranging between 20 and 55 °C, with step increase in temperature of 5 °C. Synthetic wastewater with sucrose as carbon source having chemical oxygen demand (COD) of 519–555 mg/L was used in the study. Temperature was a crucial factor in the performance of MFCs for both COD removal and electricity production. The MFC demonstrated highest COD removal efficiency of 84% and power density normalized to the anode surface area of 34.38 mW/m2 at operating temperature of 40 °C. Higher VSS to SS ratio was observed at the operating temperature between 35 and 45 °C. Under different operating temperatures the observed sludge yield was in the range of 0.05 to 0.14 g VSS/g COD removed. The maximum Coulombic and energy efficiencies were obtained at 40 °C, with values of 7.39 and 13.14%, respectively. Internal resistance of the MFC decreased with increase in operating temperature. Maximum internal resistance of 1,150 Ω was observed when the MFC was operated at 20 °C; whereas the minimum internal resistance (552 Ω) was observed at 55 °C.


2015 ◽  
Vol 57 (19) ◽  
pp. 9051-9059 ◽  
Author(s):  
Waheed Miran ◽  
Kashif Rasool ◽  
Mohsin Nawaz ◽  
Avinash Kadam ◽  
Seolhye Shin ◽  
...  

2020 ◽  
Vol 2 (101) ◽  
pp. 79-84
Author(s):  
K. Singh ◽  
Dharmendra Dharmendra

Purpose: Comparative study of various agar-agar (C14H24O9) percentage and different salts concentration in the salt bridge is carried out to check the efficiency of microbial fuel cell. Design/methodology/approach: Dual chambered microbial fuel cell was used for the overall experiments. Anode and cathode chambers were made of 500 ml plastic jar. Salt bridge was fabricated with agar-agar technical and 3 M NaCl in a PVC pipe of 2 cm long. Chemical Oxygen Demand, pH and electrical conductivity of wastewater were examined. Oxygen was supplied in the cathode chamber using the aquarium pump. Voltage (open circuit voltage) was observed using digital multimeter. Graphite rods were used as anode and cathode electrodes. Findings: Salt bridge was constructed of 3 M NaCl with 5, 7.5, 10 and 12 percent variation of agar amounts in MFC. The maximum outputs were observed 301, 306, 325 and 337.25 mV with the variation of agar 5, 7.5, 10 and 12 percentages respectively as well as chemical oxygen demand (COD) removal efficiency was observed 47.92, 56.25, 52.08 and 64.58 percentages respectively. The optimum agar concentration was found to be 12 percent and a maximum voltage of 337.25 mV and COD removal of 64.58 percent was achieved. After the optimization of agar percentage two salts i.e., Sodium chloride and potassium chloride were analysed. This study also reveals that the NaCl salt bridge is more efficient than KCl salt bridge for the same agar concentration. The maximum voltage for NaCl and KCl were 319 and 312 mV respectively. Research limitations/implications: The amount of electricity production is low and field scale implementation is difficult using microbial fuel cell. The research is still on progress in this field. Originality/value: here is very little research with salt bridge and MFC. Comparative study of different mole of salt is available but agar variation is not yet studied.


2015 ◽  
Vol 3 (1) ◽  
pp. 9-18
Author(s):  
Ali J. Jaeel

Chicken manure wastewaters are increasingly being considered a valuable resource of organic compounds. Screened chicken manure was evaluated as a representative solid organic waste. In this study, electricity generation from livestock wastewater (chicken manure) was investigated in a continuous mediator-less horizontal flow microbial fuel cell with graphite electrodes and a selective type of membrane separating the anodic and cathodic compartments of MFC from each other. The performance of MFC was evaluated to livestock wastewater using aged anaerobic sludge. Results revealed that COD and BOD removal efficiencies were up to 88% and 82%, respectively. At an external resistance value of 150 Ω, a maximum power and current densities of 278 m.W/m2 and 683 mA/m2, respectively were obtained, hence MFC utilizing livestock wastewater would be a sustainable and reliable source of bio-energy generation .


Sign in / Sign up

Export Citation Format

Share Document