Effect of operating temperature on performance of microbial fuel cell

2011 ◽  
Vol 64 (4) ◽  
pp. 917-922 ◽  
Author(s):  
M. Behera ◽  
S. S. R. Murthy ◽  
M. M. Ghangrekar

The performance of dual chambered mediator-less microbial fuel cell (MFC) operated under batch mode was evaluated under different operating temperatures, ranging between 20 and 55 °C, with step increase in temperature of 5 °C. Synthetic wastewater with sucrose as carbon source having chemical oxygen demand (COD) of 519–555 mg/L was used in the study. Temperature was a crucial factor in the performance of MFCs for both COD removal and electricity production. The MFC demonstrated highest COD removal efficiency of 84% and power density normalized to the anode surface area of 34.38 mW/m2 at operating temperature of 40 °C. Higher VSS to SS ratio was observed at the operating temperature between 35 and 45 °C. Under different operating temperatures the observed sludge yield was in the range of 0.05 to 0.14 g VSS/g COD removed. The maximum Coulombic and energy efficiencies were obtained at 40 °C, with values of 7.39 and 13.14%, respectively. Internal resistance of the MFC decreased with increase in operating temperature. Maximum internal resistance of 1,150 Ω was observed when the MFC was operated at 20 °C; whereas the minimum internal resistance (552 Ω) was observed at 55 °C.

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 619
Author(s):  
M. L. Jiménez González ◽  
Carlos Hernández Benítez ◽  
Zabdiel Abisai Juarez ◽  
Evelyn Zamudio Pérez ◽  
Víctor Ángel Ramírez Coutiño ◽  
...  

In this paper, the effect of cathode configuration on the performance of a membrane-less microbial fuel cell (MFC) was evaluated using three different arrangements: an activated carbon bed exposed to air (MFCE), a wetland immersed in an activated carbon bed (MFCW) and a cathode connected to an aeration tower featuring a water recirculation device (MFCT). To evaluate the MFC performance, the efficiency of the organic matter removal, the generated voltage, the power density and the internal resistance of the systems were properly assessed. The experimental results showed that while the COD removal efficiency was in all cases over 60% (after 40 days), the MFCT arrangement showed the best performance since the average removal value was 82%, compared to close to 70% for MFCE and MFCW. Statistical analysis of the COD removal efficiency confirmed that the performance of MCFT is substantially better than that of MFCE and MFCW. In regard to the other parameters surveyed, no significant influence of the different cathode arrangements explored could be found.


2017 ◽  
Vol 76 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Lei Xu ◽  
Yaqian Zhao ◽  
Tongyue Wang ◽  
Ranbin Liu ◽  
Fei Gao

To improve the sustainability of constructed wetlands (CWs), a novel tiered wetland system integrated with a microbial fuel cell (MFC) was developed in this study. Compared to the single stage CW, chemical oxygen demand (COD) removal efficiency was improved from 83.2% to 88.7%. More significantly, this tiered system significantly enhanced total nitrogen removal efficiency (an increase from 53.1% to 75.4%). In terms of MFC integration, a gradually decreased performance in electricity production was observed during its 3 months of operation (the voltage dropped from nearly 600 mV to less than 300 mV), which resulted in a reduction of power density from around 2 W/m3 to less than 0.5 W/m3. The deterioration in performance of the air-cathode is the main reason behind this, since the electrode potential of the cathode under open circuit reduced from 348.5 mV to 49.5 mV while the anode potential kept constant at around −400 mV. However, in spite of its electrical performance reduction, it was proved that MFC integration enhanced COD removal and the nitrification process. Further work is needed to improve the stability and feasibility of this new system.


2015 ◽  
Vol 5 (01) ◽  
Author(s):  
Kristaufan Joko Pramono ◽  
Krisna Adhitya Wardana ◽  
Prima Besty Asthary ◽  
Saepulloh .

Pulp and paper industry produces large amount of wastewater that has high pollution potentials. Nowadays, development of renewable energy resources is being researched. Membrane-less Microbial Fuel Cell (ML-MFC) can be an alternative for wastewater treatment and bioenergy producers of renewable electricity. This study was subjected to evaluate the performance of ML-MFC in pulp and paper wastewater treatment and to analyze the potentials production of electricity energy. ML-MFC reactors in laboratory scale used in this experiment were made of acrylic, provided with electrodes functioning as anode and cathode which have surface area of 1.4778 x 10-2 m2 and 4.926 x 10-3 m2, respectively. In this experiment, wastewater from pulp and paper mill was continuously fed into the reactor with retention time of 48 hours and organic load about 0.23 – 0.51 kg COD/m3.day. The results showed that there was potential of electricity production from pulp and paper mill’s wastewater treatment by ML-MFC. The maximum COD reduction and maximum power supply voltage that could be achieved were 38.50% and 118.8 mV, respectively. The maximum electric power obtained on the anode surface area of 1.4778 x 10-2 m2 was 8.46 mW/m2 when the electric current value was 101.50 mA/m2 and the resistance was 500 Ω.Keywords: wastewater, organic, bioconversion, electricity, membrane-less microbial fuel cell (ML-MFC) ABSTRAKIndustri pulp dan kertas menghasilkan air limbah dalam jumlah besar yang memiliki potensi pencemaran tinggi. Saat ini, upaya pengembangan sumber energi terbarukan terus dilakukan. Membraneless Microbial Fuel Cell (ML-MFC) adalah salah satu alternatif pengolahan air limbah dan penghasil bioenergi listrik yang dapat terbarukan. Penelitian ini dilakukan untuk mengevaluasi kinerja ML-MFC dalam pengolahan air limbah pulp dan kertas proses biologi dan menganalisa potensi produksi energi listrik. Reaktor ML-MFC skala laboratorium yang digunakan dalam percobaan terbuat dari akrilik dengan rangkaian elektroda yang berfungsi sebagai anoda dengan luas permukaan 1,4778 x 10-2 m2 dan katoda dengan luas permukaan 4,926 x 10-3 m2. Pada percobaan ini, air limbah industri pulp dan kertas dialirkan melalui reaktor secara kontinu dengan waktu tinggal 48 jam dan beban organik 0,23 – 0,51 kg COD/m3.hari. Hasil penelitian menunjukkan bahwa terdapat potensi produksi energi listrik dari proses pengolahan air limbah industri pulp dan kertas oleh ML-MFC. Reduksi maksimum nilai COD dan tegangan listrik maksimum yang dapat dicapai adalah 38,50% dan 118,8 mV. Daya listrik maksimum yang diperoleh pada luas permukaan anoda sebesar 1,4778 x 10-2 m2 adalah 8,46 mW/m2 pada saat nilai arus listrik 101,50 mA/m2 dan beban resistansi 500 Ω.Kata kunci: air limbah, organik, biokonversi, energi listrik, membrane-less microbial fuel cell (ML-MFC)


2021 ◽  
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Md. Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Biswas

Abstract Background: Day by day microbial fuel cell (MFC) technology is becoming a thought-provoking topic to the researcher because for its simultaneous utilization e.g. electricity production and wastewater treatment. Since wastewater is an important source of electrolyte for MFC, the key tenacity of this study was to investigate the outcome of pH happening various (Municipal, Bhairab river and Hospital) wastewaters used as electrolyte in dual chamber MFC.Findings: The lab-scale experiment was conducted in batch mode, where zinc plate (0.0027m2) as anode and copper plate (0.0027m2) as cathode. In this study a single electrolyte (any one of earlier mentioned three electrolytes) was used in five dual-chambers MFC where the pH of the electrolyte was 6, 7, 8, 9 and 10. The MFC was worked on a temperature ranged from 27°C to 34°C. Maximum outputs were found in terms of current density (1288.9mAm-2), voltage (1132 mV) and power density (1459.02wmw-2) were obtained at pH 8 by using Bhairab river water as an electrolyte in MFC chamber. A substantial amount of COD removal (94%) was also achieved in the same MFC chamber at the same pH (i.e. pH 8). However, the optimum operating pH for MFC containing municipal wastewater and hospital wastewater was found to be 8 and 9, respectively.Conclusion: The results suggest that various wastewaters may act as feasible feedstocks for bioelectricity generation in MFC. The results also show that COD can be removed from wastewater that suggest a treatment possibility of wastewater.


2020 ◽  
Vol 2 (101) ◽  
pp. 79-84
Author(s):  
K. Singh ◽  
Dharmendra Dharmendra

Purpose: Comparative study of various agar-agar (C14H24O9) percentage and different salts concentration in the salt bridge is carried out to check the efficiency of microbial fuel cell. Design/methodology/approach: Dual chambered microbial fuel cell was used for the overall experiments. Anode and cathode chambers were made of 500 ml plastic jar. Salt bridge was fabricated with agar-agar technical and 3 M NaCl in a PVC pipe of 2 cm long. Chemical Oxygen Demand, pH and electrical conductivity of wastewater were examined. Oxygen was supplied in the cathode chamber using the aquarium pump. Voltage (open circuit voltage) was observed using digital multimeter. Graphite rods were used as anode and cathode electrodes. Findings: Salt bridge was constructed of 3 M NaCl with 5, 7.5, 10 and 12 percent variation of agar amounts in MFC. The maximum outputs were observed 301, 306, 325 and 337.25 mV with the variation of agar 5, 7.5, 10 and 12 percentages respectively as well as chemical oxygen demand (COD) removal efficiency was observed 47.92, 56.25, 52.08 and 64.58 percentages respectively. The optimum agar concentration was found to be 12 percent and a maximum voltage of 337.25 mV and COD removal of 64.58 percent was achieved. After the optimization of agar percentage two salts i.e., Sodium chloride and potassium chloride were analysed. This study also reveals that the NaCl salt bridge is more efficient than KCl salt bridge for the same agar concentration. The maximum voltage for NaCl and KCl were 319 and 312 mV respectively. Research limitations/implications: The amount of electricity production is low and field scale implementation is difficult using microbial fuel cell. The research is still on progress in this field. Originality/value: here is very little research with salt bridge and MFC. Comparative study of different mole of salt is available but agar variation is not yet studied.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tesfalem Atnafu ◽  
Seyoum Leta

Abstract Background Microbial fuel cell (MFC) technology is a promising sustainable future energy source with a renewable and abundant substrate. MFC critical drawbacks are anode surface area limitations and electrochemical loss. Recent studies recommend thick anode biofilm growth due to the synergetic effect between microbial communities. Engineering the anode surface area is the prospect of MFC. In this study, a microbial electrode jacket dish (MEJ-dish) was invented, first time to the authors’ knowledge, to support MFC anode biofilm growth. The MFC reactor with MEJ-dish was hypothesized to develop a variable biofilm thickens. This reactor is called a fragmented electro-active biofilm-microbial fuel cell (FAB-MFC). It was optimized for pH and MEJ-dish types and tested at a bench-scale. Results Fragmented (thick and thin) anode biofilms were observed in FAB-MFC but not in MFC. During the first five days and pH 7.5, maximum voltage (0.87 V) was recorded in MFC than FAB-MFC; however, when the age of the reactor increases, all the FAB-MFC gains momentum. It depends on the MEJ-dish type that determines the junction nature between the anode and MEJ-dish. At alkaline pH 8.5, the FAB-MFC generates a lower voltage relative to MFC. On the contrary, the COD removal was improved regardless of pH variation (6.5–8.5) and MEJ-dish type. The bench-scale studies support the optimization findings. Overall, the FAB improves the Coulombic efficiency by 7.4–9.6 % relative to MFC. It might be recommendable to use both FAB and non-FAB in a single MFC reactor to address the contradictory effect of increasing COD removal associated with the lower voltage at higher pH. Conclusions This study showed the overall voltage generated was significantly higher in FAB-MFC than MFC within limited pH (6.5–7.5); relatively, COD removal was enhanced within a broader pH range (6.5–8.5). It supports the conclusion that FAB anode biofilms were vital for COD removal, and there might be a mutualism even though not participated in voltage generation. FAB could provide a new flexible technique to manage the anode surface area and biofilm thickness by adjusting the MEJ-dish size. Future studies may need to consider the number, size, and conductor MEJ-dish per electrode.


2015 ◽  
Vol 3 (1) ◽  
pp. 9-18
Author(s):  
Ali J. Jaeel

Chicken manure wastewaters are increasingly being considered a valuable resource of organic compounds. Screened chicken manure was evaluated as a representative solid organic waste. In this study, electricity generation from livestock wastewater (chicken manure) was investigated in a continuous mediator-less horizontal flow microbial fuel cell with graphite electrodes and a selective type of membrane separating the anodic and cathodic compartments of MFC from each other. The performance of MFC was evaluated to livestock wastewater using aged anaerobic sludge. Results revealed that COD and BOD removal efficiencies were up to 88% and 82%, respectively. At an external resistance value of 150 Ω, a maximum power and current densities of 278 m.W/m2 and 683 mA/m2, respectively were obtained, hence MFC utilizing livestock wastewater would be a sustainable and reliable source of bio-energy generation .


Sign in / Sign up

Export Citation Format

Share Document