scholarly journals Research and application on numerical simulation of ship maneuvering motion under bank effect

Author(s):  
Meifang Tang ◽  
Sichen Tong ◽  
Yun Yang
2005 ◽  
Vol 49 (02) ◽  
pp. 69-79 ◽  
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo ◽  
Ming-Ling Lee

In the paper, a simplified six degrees of freedom mathematical model encompassing calm water maneuvering and traditional seakeeping theories is developed to simulate the ship turning circle test in regular waves. A coordinate system called the horizontal body axes system is used to present equations of maneuvering motion in waves. All corresponding hydrodynamic forces and coefficients for seakeeping are time varying and calculated by strip theory. For simplification, the added mass and damping coefficients are calculated using the constant draft but vary with encounter frequency. The nonlinear mathematical model developed here is successful in simulating the turning circle of a containership in sea trial conditions and can be extended to make the further simulation for the ship maneuvering under control in waves. Manuscript received at SNAME headquarters February 19, 2003; revised manuscript received January 27, 2004.


2020 ◽  
Vol 216 ◽  
pp. 107994
Author(s):  
Zihao Wang ◽  
Haitong Xu ◽  
Li Xia ◽  
Zaojian Zou ◽  
C. Guedes Soares

2020 ◽  
Vol 8 (11) ◽  
pp. 927
Author(s):  
Jin Huang ◽  
Chen Xu ◽  
Ping Xin ◽  
Xueqian Zhou ◽  
Serge Sutulo ◽  
...  

The hydrodynamic interaction induced by the complex flow around a ship maneuvering in restricted waters has a significant influence on navigation safety. In particular, when a ship moves in the vicinity of a bank, the hydrodynamic interaction forces caused by the bank effect can significantly affect the ship’s maneuverability. An efficient algorithm integrated in onboard systems or simulators for capturing the bank effect with fair accuracy would benefit navigation safety. In this study, an algorithm based on the potential-flow theory is presented for efficient calculation of ship-bank hydrodynamic interaction forces. Under the low Froude number assumption, the free surface boundary condition is approximated using the double-body model. A layer of sources is dynamically distributed on part of the seabed and bank in the vicinity of the ship to model the boundary conditions. The sinkage and trim are iteratively solved via hydrostatic balance, and the importance of including sinkage and trim is investigated. To validate the numerical method, a series of simulations with various configurations are carried out, and the results are compared with experiment and numerical results obtained with RANSE-based and Rankine source methods. The comparison and analysis show the accuracy of the method proposed in this paper satisfactory except for extreme shallow water cases.


2015 ◽  
Vol 52 ◽  
pp. 212-221 ◽  
Author(s):  
Cao Jian ◽  
Zhuang Jiayuan ◽  
Xu Feng ◽  
Yin Jianchuan ◽  
Zou Zaojian ◽  
...  

2009 ◽  
Vol 419-420 ◽  
pp. 677-680
Author(s):  
Dong Li Li ◽  
Liang Yang ◽  
Hong Yu Zhang ◽  
Tian Shu Peng

In this paper, based on CFD method and dynamic mesh technology, the ship maneuvering performance is predicted in viscous flow. Numerical computation models are built to realize the simulation of the ship maneuvering motions such as static drift test, static rudder test, pure yaw test and pure sway test. Hydrodynamic forces and moments acting on a maneuvering ship are obtained in the body-fixed coordinate system. The computational results are compared with data of potential theory method. Then based on VC code, a simulator of ship maneuvering motions is built to simulate ship Zigzagging and Turing test. The results show that the present numerical simulation method and the ship maneuvering motion simulator are able to be used in numerical simulation of the real size ship maneuvering motions in viscous flow field.


Author(s):  
Yin Jian-Chuan ◽  
Zou Zao-Jian ◽  
Xu Feng

Partial least squares (PLS) regression is used for identifying the hydrodynamic derivatives in the Abkowitz model for ship maneuvering motion. To identify the dynamic characteristics in ship maneuvering motion, the derivatives of hydrodynamic model's outputs are set as the target output of the PLS identification model. To verify the effectiveness of PLS parametric identification method in processing data with high dimensionality and heavy multicollinearity, the identified results of the hydrodynamic derivatives from the simulated 20 deg/20 deg zigzag test are compared with the planar motion mechanism (PMM) test results. The performance of PLS regression is also compared with that of the conventional least squares (LS) regression using the same dataset. Simulation results show the satisfactory identification and generalization performances of PLS regression and its superiority in comparison with the LS method, which demonstrates its capability in processing measurement data with high dimensionality and heavy multicollinearity, especially in processing data with small sample size.


Author(s):  
Weilin Luo ◽  
C. Guedes Soares ◽  
Zaojian Zou

Combined with the free-running model tests of KVLCC ship, the system identification (SI) based on support vector machines (SVM) is proposed for the prediction of ship maneuvering motion. The hydrodynamic derivatives in an Abkowitz model are determined by the Lagrangian factors and the support vectors in the SVM regression model. To obtain the optimized structural factors in SVM, particle swarm optimization (PSO) is incorporated into SVM. To diminish the drift of hydrodynamic derivatives after regression, a difference method is adopted to reconstruct the training samples before identification. The validity of the difference method is verified by correlation analysis. Based on the Abkowitz mathematical model, the simulation of ship maneuvering motion is conducted. Comparison between the predicted results and the test results demonstrates the validity of the proposed methods in this paper.


1981 ◽  
Vol 28 (325) ◽  
pp. 207-222 ◽  
Author(s):  
S. Inoue ◽  
M. Hirano ◽  
K. Kijima ◽  
J. Takashina

Sign in / Sign up

Export Citation Format

Share Document