scholarly journals The impact of tree clusters on air circulation and pollutant diffusion-urban micro scale environmental simulation based on ENVI-met

2021 ◽  
Vol 657 (1) ◽  
pp. 012008
Author(s):  
Lili Jing ◽  
Yuan Liang
2020 ◽  
Vol 11 (05) ◽  
pp. 857-864
Author(s):  
Abdulrahman M. Jabour

Abstract Background Maintaining a sufficient consultation length in primary health care (PHC) is a fundamental part of providing quality care that results in patient safety and satisfaction. Many facilities have limited capacity and increasing consultation time could result in a longer waiting time for patients and longer working hours for physicians. The use of simulation can be practical for quantifying the impact of workflow scenarios and guide the decision-making. Objective To examine the impact of increasing consultation time on patient waiting time and physician working hours. Methods Using discrete events simulation, we modeled the existing workflow and tested five different scenarios with a longer consultation time. In each scenario, we examined the impact of consultation time on patient waiting time, physician hours, and rate of staff utilization. Results At baseline scenarios (5-minute consultation time), the average waiting time was 9.87 minutes and gradually increased to 89.93 minutes in scenario five (10 minutes consultation time). However, the impact of increasing consultation time on patients waiting time did not impact all patients evenly where patients who arrive later tend to wait longer. Scenarios with a longer consultation time were more sensitive to the patients' order of arrival than those with a shorter consultation time. Conclusion By using simulation, we assessed the impact of increasing the consultation time in a risk-free environment. The increase in patients waiting time was somewhat gradual, and patients who arrive later in the day are more likely to wait longer than those who arrive earlier in the day. Increasing consultation time was more sensitive to the patients' order of arrival than those with a shorter consultation time.


2021 ◽  
pp. n/a-n/a
Author(s):  
Jade Sheen ◽  
Wendy Sutherland‐Smith ◽  
Emma Thompson ◽  
George J. Youssef ◽  
Amanda Dudley ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 3518
Author(s):  
Xiaoyi Xing ◽  
Li Dong ◽  
Cecil Konijnendijk ◽  
Peiyao Hao ◽  
Shuxin Fan ◽  
...  

The spatial variation of poplars’ reproductive phenology in Beijing’s urban area has aggravated the threat of poplar fluff (cotton-like flying seeds) to public health. This research explored the impact of microclimate conditions on the reproductive phenology of female Populus tomentosa in Taoranting Park, a micro-scale green space in Beijing (range <1 km). The observed phenophases covered flowering, fruiting, and seed dispersal, and ENVI-MET was applied to simulate the effect of the microclimate on SGS (start day of the growing season). The results showed that a significant spatial variation in poplar reproductive phenology existed at the research site. The variation was significantly affected by the microclimate factors DMT (daily mean temperature) and DMH (daily mean heat transfer coefficient), with air temperature playing a primary role. Specifically, the phenology of flowering and fruiting phenophases (BBB, BF, FF, FS) was negatively correlated with DMT (−0.983 ≤ r ≤ −0.908, p <0.01) and positively correlated with DMH (0.769 ≤ r ≤ 0.864, p < 0.05). In contrast, DSD (duration of seed dispersal) showed a positive correlation with DMT (r = 0.946, p < 0.01) and a negative correlation with DMH (r = −0.922, p < 0.01). Based on the findings, the increase in air convection with lower air temperature and decrease in microclimate variation in green space can be an effective way to shorten the seed-flying duration to tackle poplar fluff pollution in Beijing’s early spring.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-21
Author(s):  
Hossam ElHussini ◽  
Chadi Assi ◽  
Bassam Moussa ◽  
Ribal Atallah ◽  
Ali Ghrayeb

With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.


Surgery ◽  
2010 ◽  
Vol 147 (5) ◽  
pp. 631-639 ◽  
Author(s):  
Pamela B. Andreatta ◽  
Miranda Hillard ◽  
Lewis P. Krain

2021 ◽  
Author(s):  
Matthew Jackson ◽  
Lauren McTier ◽  
Laura A Brooks ◽  
Rochelle Wynne

Abstract Background: Although simulation-based education (SBE) has become increasingly popular as a mode of teaching in undergraduate nursing courses its effect on associated student learning outcomes remains ambiguous. Educational outcomes are influenced by SBE quality that is governed by technology, training, resources and SBE design elements. This paper reports the protocol for a systematic review to identify, appraise and synthesise the best available evidence regarding the impact of SBE on undergraduate nurses’ learning outcomes. Methods: Databases to be searched from 1st of January 1990 include the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Medical Literature Analysis and Retrieval System Online (MEDLINE), American Psychological Association (APA) PsycInfo and the Education Resources Information Centre (ERIC) via the EBSCO host platform. The Excerpta Medica database (EMBASE) will be searched via the OVID platform. We will review the reference lists of relevant articles for additional citations. A combination of search terms including ‘nursing students’, ‘simulation training, ‘patient simulation’, and ‘immersive simulation’ with common Boolean operators will be used. Specific search terms will be combined with either MeSH or Emtree terms and appropriate permutations for each database. Search findings will be imported into reference management software (Endnote© Version.X9) then uploaded into Covidence where two reviewers will independently screen titles, abstracts and retrieved full text. A third reviewer will be available to resolve conflicts and moderate consensus discussions. Quantitative primary research studies evaluating the effect of SBE on undergraduate nursing students’ educational outcomes will be included. The Mixed Methods Appraisal Tool (MMAT) will be used for quality assessment of core criteria, in addition to the Cochrane RoB 2 and ROBINS-I to assess risk of bias for randomised and non-randomised studies, respectively. Primary outcomes are any measure of knowledge, skills, or attitude. Discussion: SBE has been widely adopted by healthcare disciplines in tertiary teaching settings. This systematic review will reveal (i) the effect of SBE on learning outcomes, (ii) SBE element variability, and (iii) interplay between SBE elements and learning outcome. Findings will specify SBE design elements to inform the design and implementation of future strategies for simulation-based undergraduate nursing education.Systematic Review Registration: PROSPERO CRD42021244530


2016 ◽  
Vol 846 ◽  
pp. 42-47
Author(s):  
J. Busse ◽  
S. Galindo Torres ◽  
Alexander Scheuermann ◽  
L. Li ◽  
D. Bringemeier

Coal mining raises a number of environmental and operational challenges, including the impact of changing groundwater levels and flow patterns on adjacent aquifer and surface water systems. Therefore it is of paramount importance to fully understand the flow of water and gases in the geological system on all scales. Flow in coal seams takes place on a wide range of scales from large faults and fractures to the micro-structure of a porous matrix intersected by a characteristic cleat network. On the micro-scale these cleats provide the principal source of permeability for fluid and gas flow. Description of the behaviour of the flow within the network is challenging due to the variations in number, sizing, orientation, aperture and connectivity at a given site. This paper presents a methodology to simulate flow and investigate the permeability of fractured media. A profound characterization of the geometry of the cleat network in micrometer resolution can be derived by CT-scans. The structural information is fed into a Lattice Boltzmann Method (LBM) based model that allows the implementation of virtual flow experiments. With the application of suitable hydraulic boundary conditions the full permeability tensor can be calculated in 3D.


Sign in / Sign up

Export Citation Format

Share Document