A Tale of Two Entities

2021 ◽  
Vol 2 (2) ◽  
pp. 1-21
Author(s):  
Hossam ElHussini ◽  
Chadi Assi ◽  
Bassam Moussa ◽  
Ribal Atallah ◽  
Ali Ghrayeb

With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1577
Author(s):  
Shuang Gao ◽  
Jianzhong Wu ◽  
Bin Xu

A considerable market share of electric vehicles (EVs) is expected in the near future, which leads to a transformation from gas stations to EV charging infrastructure for automobiles. EV charging stations will be integrated with the power grid to replace the fuel consumption at the gas stations for the same mobile needs. In order to evaluate the impact on distribution networks and the controllability of the charging load, the temporal and spatial distribution of the charging power is calculated by establishing mapping the relation between gas stations and charging facilities. Firstly, the arrival and parking period is quantified by applying queuing theory and defining membership function between EVs to parking lots. Secondly, the operational model of charging stations connected to the power distribution network is formulated, and the control variables and their boundaries are identified. Thirdly, an optimal control algorithm is proposed, which combines the configuration of charging stations and charging power regulation during the parking period of each individual EV. A two-stage hybrid optimization algorithm is developed to solve the reliability constrained optimal dispatch problem for EVs, with an EV aggregator installed at each charging station. Simulation results validate the proposed method in evaluating the controllability of EV charging infrastructure and the synergy effects between EV and renewable integration.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 686 ◽  
Author(s):  
Bruno Canizes ◽  
João Soares ◽  
Zita Vale ◽  
Juan Corchado

The use of electric vehicles (EVs) is growing in popularity each year, and as a result, considerable demand increase is expected in the distribution network (DN). Additionally, the uncertainty of EV user behavior is high, making it urgent to understand its impact on the network. Thus, this paper proposes an EV user behavior simulator, which operates in conjunction with an innovative smart distribution locational marginal pricing based on operation/reconfiguration, for the purpose of understanding the impact of the dynamic energy pricing on both sides: the grid and the user. The main goal, besides the distribution system operator (DSO) expenditure minimization, is to understand how and to what extent dynamic pricing of energy for EV charging can positively affect the operation of the smart grid and the EV charging cost. A smart city with a 13-bus DN and a high penetration of distributed energy resources is used to demonstrate the application of the proposed models. The results demonstrate that dynamic energy pricing for EV charging is an efficient approach that increases monetary savings considerably for both the DSO and EV users.


2021 ◽  
Author(s):  
Manjush Ganiger ◽  
Maneesh Pandey ◽  
Rahul Wagh ◽  
Rakesh Govindasamy

Abstract Transition towards electric vehicles (EV) is the key enabler for fighting against climate change as well as for sustainable future. However, to build more confidence on EV transition, availability of charging infrastructure is key. One of the important criterions for vehicle charging station is to have a stable electricity source that can meet varying charging demand. The paper attempts to explore the eco-system of self-sustainable and quasi-renewable charging infrastructure. This paper outlines a circular economy model for EV charging station (EVCS) using a gas turbine from the Baker Hughes™ portfolio. The proposed solution includes Solid Oxide Electrolyzer and a carbon capture unit, integrated to the gas turbine. This integrated system is decarbonized using the hydrogen generated by the electrolysis unit. Proposed solution on EVCS can charge about 1500 EVs in half a day of operation (50% power split). Solution is lucrative and has attractive return on investment. The solution here is having high power density, compared to the actual renewable energy dependent charging stations. The solution is flexible to incorporate Power-to-X conversions. Modular nature of the solution makes it easy to implement in city limits as well as in remote locations, along the highways, where grid availability can be challenging.


2018 ◽  
Vol 44 ◽  
pp. 00065 ◽  
Author(s):  
Leszek Kasprzyk ◽  
Robert Pietracho ◽  
Karol Bednarek

The paper presents problems related to the impact of electric vehicles connected to the power grid on energy parameters. Basic methods of control in power grids were discussed and results of the simulation were presented with regards to the power distribution, voltage drops and losses in the transmission lines. The simulation was conducted based on the example of CIGRE 11, to which electric vehicle charging stations were connected in several selected points, with the possibility of energy release into the grid. The obtained results were compared for the simulation conducted in two variants – without the connected electric vehicles and with them. The obtained results were analyzed and commented upon.


2020 ◽  
Vol 12 (16) ◽  
pp. 6324 ◽  
Author(s):  
Cláudia A. Soares Machado ◽  
Harmi Takiya ◽  
Charles Lincoln Kenji Yamamura ◽  
José Alberto Quintanilha ◽  
Fernando Tobal Berssaneti

Over the last few years, electric vehicles (EVs) have turned into viable urban transportation alternatives. Charging infrastructure is an issue, since high investment is needed and there is a lot of demand uncertainty. Seeking to fill gaps in past studies, this investigation proposes a set of procedures to identify the most adequate places for implementing the EV charging infrastructure. In order to identify the most favorable districts for the installation and operation of electric charging infrastructure in São Paulo city, the following public available information was considered: the density of points of interest (POIs), distribution of the average monthly per capita income, and number of daily trips made by transportation mode. The current electric vehicle charging network and most important business corridors were additionally taken into account. The investigation shows that districts with the largest demand for charging stations are located in the central area, where the population also exhibits the highest purchasing power. The charging station location process can be applied to other cities, and it is possible to use additional variables to measure social inequality.


2013 ◽  
Vol 325-326 ◽  
pp. 628-631
Author(s):  
Yu Tian Sun ◽  
Hua Dong Zhang ◽  
Zhi Hui Li ◽  
Jian Xiang Li ◽  
Cheng Qi ◽  
...  

Electric vehicle charging stations are high-power load after they are accessed to the grid. Therefore it may result in the redistribution of the grid load, which leads to the change of the power flow and the grid loss increases. The load model of charging stations is established in a typical distribution network model in this paper. The impact on the distribution network power flow after the electric vehicle charging stations accessed to the grid is calculated. And then some measures to reduce the network loss are brought up, which are proved by relational calculation cases.


2022 ◽  
Vol 354 ◽  
pp. 00004
Author(s):  
Georgeta Buica ◽  
Anca Elena Antonov ◽  
Constantin Beiu ◽  
Pasculescu Dragoș ◽  
Remus Dobra

Implementing the objectives set at the European and national level to minimize dependence on fossil fuels and mitigate the impact of transport on the environment by introducing fiscal facilities has led to an increase in the market for electric vehicles. This increase requires the development and expansion of charging infrastructure for electric vehicles. The transition from the supply of classic fuel vehicles to the electric ones led to the elimination of some risks and the appearance of new risks for the charging stations’ maintenance staff and the users. The study presents research on the identification of technical and safety requirements specific to a category of work equipment used to charge electric vehicles - charging stations. The technical and safety requirements applicable to electric vehicle charging stations have the role of providing the criteria underlying the management of the necessary risk management of both manufacturers and users and entities that ensure the maintenance of this equipment to adopt highly technical solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jianxue Wang ◽  
Yanlin Cui ◽  
Minghui Zhu

Integrating EV charging station into power grid will bring impacts on power system, among which the most significant one is the harmonic pollution on distribution networks. Due to the uncertainty of the EV charging process, the harmonic currents brought by EV charging stations have a random nature. This paper proposed a mathematical simulation method for studying the working status of charging stations, which considers influencing factors including random leaving factor, electricity price, and waiting time. Based on the proposed simulation method, the probability distribution of the harmonic currents of EV charging stations is obtained and used in the calculation of the probability harmonic power flow. Then the impacts of EVs and EV charging stations on distribution networks can be analyzed. In the case study, the proposed simulation and analysis method is implemented on the IEEE-34 distribution network. The influences of EV arrival rates, the penetration rate, and the accessing location of EV charging station are also investigated. Results show that this research has good potential in guiding the planning and construction of charging station.


2021 ◽  
Vol 1 ◽  
pp. 156
Author(s):  
Natascia Andrenacci ◽  
Federigo Karagulian ◽  
Antonino Genovese

Background: The correct design of electric vehicle (EV) charging infrastructures is of fundamental importance to maximize the benefits for users and infrastructure managers. In addition, the analysis and management of recharges can help evaluate integration with auxiliary systems, such as renewable energy resources and storage systems. EV charging data analysis can highlight informative behaviours and patterns for charging infrastructure planning and management. Methods: We present the analysis of two datasets about the recorded energy and duration required to charge Electric Vehicles (EV) in the cities of Barcelona (Spain) and Turku (Finland). In particular, we investigated hourly, daily and seasonal patterns in charge duration and energy delivered. Simulated scenarios for the power request at charging stations (CSs) were obtained using statistical parameters of the Barcelona dataset and non-parametric distributions of the arrivals. Monte Carlo simulations were used to test different scenarios of users’ influx at the CSs, and determine the optimal size of an integrated renewable energy system (RES). Results: This study highlighted the difference between fast and slow charging users’ habits by analysing the occupancy at the charging stations. Aside from the charge duration, which was shorter for fast charges, distinct features emerged in the hourly distribution of the requests depending on whether slow or fast charges are considered. The distributions were different in the two analysed datasets. The investigation of CS power fluxes showed that results for the investment on a RES could substantially vary when considering synthetic input load profiles obtained with different approaches. The influence of incentives on the initial RES cost were investigated. Conclusions: The novelty of this work lies in testing the impact of different simulated profiles as input in the economic criterion of the net present value (NPV) for determining the size of a photovoltaic (PV) system installed at a charging infrastructure.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xiaomin Xu ◽  
Dongxiao Niu ◽  
Yan Li ◽  
Lijie Sun

Considering that the charging behaviors of users of electric vehicles (EVs) (including charging time and charging location) are random and uncertain and that the disorderly charging of EVs brings new challenges to the power grid, this paper proposes an optimal electricity pricing strategy for EVs based on region division and time division. Firstly, by comparing the number of EVs and charging stations in different districts of a city, the demand ratio of charging stations per unit is calculated. Secondly, according to the demand price function and the principle of profit maximization, the charging price between different districts of a city is optimized to guide users to charge in districts with more abundant charging stations. Then, based on the results of the zonal pricing strategy, the time-of-use (TOU) pricing strategy in different districts is discussed. In the TOU pricing model, consumer satisfaction, the profit of power grid enterprises, and the load variance of the power grid are considered comprehensively. Taking the optimization of the comprehensive index as the objective function, the TOU pricing optimization model of EVs is constructed. Finally, the nondominated sorting genetic algorithm (NSGA-II) is introduced to solve the above optimization problems. The specific data of EVs in a municipality directly under the Central Government are taken as examples for this analysis. The empirical results demonstrate that the peak-to-valley ratio of a certain day in the city is reduced from 56.8% to 43% by using the optimal pricing strategy, which further smooth the load curve and alleviates the impact of load fluctuation. To a certain extent, the problem caused by the uneven distribution of electric vehicles and charging stations has been optimized. An orderly and reasonable electricity pricing strategy can guide users to adjust charging habits, to ensure grid security, and to ensure the economic benefits of all parties.


Sign in / Sign up

Export Citation Format

Share Document