scholarly journals Influence of Hollow Effect on PPV of Wall Rock under Blasting Load

2021 ◽  
Vol 719 (3) ◽  
pp. 032031
Author(s):  
Jun Cai ◽  
Xiuli Qiu ◽  
Ying Su
Keyword(s):  
2014 ◽  
Vol 51 (5) ◽  
pp. 520-539 ◽  
Author(s):  
Shili Qiu ◽  
Xiating Feng ◽  
Chuanqing Zhang ◽  
Tianbing Xiang

For rock support in burst-prone ground, the wall-rock velocity adjacent to the surface of underground openings is a vital support design parameter, and depends on the seismic source mechanism inducing rockburst damage. In this study, to estimate the wall-rock velocity evoked only by rock slab buckling (an important rockburst source mechanism), a comprehensive velocity assessment method is proposed, using an excellent slab column buckling model with a small eccentricity, which relies on a novel compressive or tensile buckling failure criterion of rock slab. The true-triaxial loading–unloading tests and rockburst case analyses reveal that rock mass slabbing induced by high rock stress has major impacts on the evolution and formation of buckling rockburst in deep tunnels. Using a method based on the energy balance principle, the slabbing thickness of intact rock mass is also calculated by an analytical method, which indicates that the slabbing thickness parameter has a nonlinear relation to the following six parameters: uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), normal stress (σn), length of joint (L), friction angle ([Formula: see text]), and joint roughness coefficient (JRC). These proposed models and methods have been quite successfully applied to rockburst and slabbing cases occurring in deep tunnels. These applications show that slab flexure is an important source mechanism invoking high wall-rock velocities and leading to severe rockburst damages in the area surrounding deep tunnels.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1443-1448
Author(s):  
YUE-XIU WU ◽  
QUAN-SHENG LIU

To understand the dynamic response of transversely isotropic material under explosion load, the analysis is done with the help of ABAQUS software and the constitutive equations of transversely isotropic material with different angle of isotropic section. The result is given: when the angle of isotropic section is settled, the velocity and acceleration of measure points decrease with the increasing distance from the explosion borehole. The velocity and acceleration in the loading direction are larger than those in the normal direction of the loading direction and their attenuation are much faster. When the angle of isotropic section is variable, the evolution curves of peak velocity and peak acceleration in the loading direction with the increasing angles are notching parabolic curves. They get their minimum values when the angle is equal to 45 degree. But the evolution curves of peak velocity and peak acceleration in the normal direction of the loading direction with the increasing angles are overhead parabolic curves. They get their maximum values when the angle is equal to 45 degree.


1965 ◽  
Vol 5 (42) ◽  
pp. 849-856 ◽  
Author(s):  
Samuel I. Outcalt ◽  
James B. Benedict

AbstractTwo types of rock glacier occur in the Colorado Front Range. Rock glaciers on the floors of modern cirques closely resemble the tongues of small valley glaciers. Because they contain cores of banded glacial ice and grade up-valley into lateral moraines, rock glaciers of this type are believed to represent the debris-covered tongues of former glaciers. Most consist of two or more superimposed lobes, bounded by longitudinal furrows, and resulting from independent ice advances. Despite their compound nature, the complexes now appear to be moving down-slope as single units. Two generations of “cirque-floor” rock glaciers, both tentatively dated as being of post-Pleistocene age, occur in the Front Range.Rock glaciers of an entirely different character occur beneath steep valley walls, where they are supplied with debris by avalanche couloirs. Interstitial ice, responsible for the movement of “valley-wall” rock glaciers, probably results from the metamorphism of snow buried beneath rock-fall debris or supplied by winter avalanching.


2016 ◽  
Vol 61 (1) ◽  
pp. 55-86 ◽  
Author(s):  
T.D. Ford ◽  
N.E. Worley

This review of the South Pennine Orefield (SPO) draws together the findings from many years of underground field observations and petrographical study. Mineralization is of the Mississippi Valley-type (MVT) and is concentrated within an area of some 200 km2, mainly along the eastern margins of a large inlier, the Derbyshire High, in Carboniferous platform carbonate host rocks. The inlier covers some 390 km2, forms an up-dip promontory of a larger structure, the East Midlands Shelf, and is surrounded by shales and sandstones of the Millstone Grit and Pennine Coal Measures groups. Mineralization probably began during the late Westphalian (Moscovian, Mid Pennsylvanian), when subsidence due to thermal sag resulted in the limestone being buried to depths of c. 4 km beneath younger strata. A palaeohydraulic reconstruction is presented from analysis of mineralized palaeokarst features, which are interpreted as representing hypogenic or deep-seated karst formed by the interstratal circulation of hydrothermal water in a mostly confined hydrodynamic setting. It is reasoned that Variscan inversion of N–S faults to the east of the SPO resulted in erosion of Namurian and Westphalian (Upper Mississippian–Middle Pennsylvanian) rocks and created a hydraulic gradient inclined towards the south-west. Acidic F-Ba-Pb-Zn enriched fluid evolved in the Namurian basinal rocks and migrated into fractured limestone. The resultant wall-rock dissolution along existing wrench faults led to the formation of a maze of stratiform mineral deposits (flats) and more irregular spongework-shaped structures (pipes). The presence of hydrocarbon accumulations in the limestones and evidence from fluid inclusions indicates that the mineralizing fluids were chloride/fluoride-rich and compositionally typical of oilfield brine. Isotope evidence demonstrates a sulphate evaporite source of sulphur, mainly from the Chadian (Visean, Middle Mississippian) Middleton Anhydrite Formation. By the late Cenozoic, karstification of exposed carbonate rocks began and the current pattern of epigenic karst drainage started to develop as the regional hydraulic gradient reversed, assuming its present eastward inclined attitude. The mineralized hypogenic karst was overprinted by later drainage systems as the hydraulic gradient changed, and placer deposits were formed from the erosion of existing mineralization. This was accompanied by circulation of meteoric water and resulted in the supergene weathering of the sulphide ore minerals. Eastward underflow of meteoric groundwater also exploited the same mineralization flow paths. There is evidence that pre-mineralization hypogenic karst was also significant in the formation of orebodies in the North Pennine Orefield and the Halkyn–Minera Orefield of NE Wales.


Sign in / Sign up

Export Citation Format

Share Document