scholarly journals Study on Volume Index Test and Control of Large Stone Porous Asphalt Mixture

2021 ◽  
Vol 769 (3) ◽  
pp. 032014
Author(s):  
Zhigeng Zhang ◽  
Jiasheng Zhao ◽  
Fangtao Liu ◽  
Fei Yang
2013 ◽  
Vol 838-841 ◽  
pp. 76-79
Author(s):  
Jin Cheng Wei ◽  
Sheng Di Lu ◽  
Jin Li

This study focused on the performance of the Large Stone Permeable Asphalt Mixture (LSPM) with neat asphalt and its feasibility to use as asphalt pavement flexible base. For comparision, LSPM mixtures were designed respectively with neat 60/70-grade asphalt and modified asphalt and the performance of LSPM was studied and compared by volume index test, draindown test, Hamburg Wheel-tracking Test and dynamic modulus test. The results showed that the performance of LSPM with modified asphalt was superior to LSPM with neat asphalt and cellulose fiber, but draindown and rutting performance of LSPM with neat asphalt met requirements of corresponding specification and dynamic modulus of LSPM with neat asphalt had the same characteristic with LSPM with modified asphalt, which proven that LSPM with neat asphalt can use as asphalt pavement flexible base by properly mix design and pavement structure design.


2014 ◽  
Vol 26 (17) ◽  
pp. 5739-5744 ◽  
Author(s):  
Bin Yang ◽  
Sihao Mo ◽  
Longhui Wang ◽  
Ye Ji

2010 ◽  
Vol 150-151 ◽  
pp. 1184-1190 ◽  
Author(s):  
Wei Dong Cao ◽  
Zhan Yong Yao ◽  
Qing Sen Shang ◽  
Ying Yong Li ◽  
Yong Shun Yang

Performance of Large Stone Porous Asphalt- Rubber Mixture(LSPARM)was studied in laboratory. Hamburg wheel tracking test, low temperature indirect tensile test and bending fatigue test were conducted to evaluate the high temperature performance of resistance to rutting, moisture susceptibility, low temperature performance of resistance to cracking and anti-fatigue performance of LSPARM and the test results were compared with the conventional large stone porous asphalt mixture using one polymer modified asphalt (control mixture). The test results indicate that LSPARM has better performance than the control mixture and it could be used as stress absorbing layers of semi-rigid base asphalt pavement.


Author(s):  
Amir Golalipour ◽  
Varun Veginati ◽  
David J. Mensching

In the asphalt materials community, the most critical research need is centered around a paradigm shift in mixture design from the volumetric process of the previous 20-plus years to an optimization procedure based on laboratory-measured mechanical properties that should lead to an increase in long-term pavement performance. This study is focused on advancing the state of understanding with respect to the value of intermediate temperature cracking tests, which may be included in a balanced mix design. The materials included are plant-mixed, laboratory-compacted specimens reheated from the 2013 Federal Highway Administration’s (FHWA’s) Accelerated Loading Facility (ALF) study on reclaimed asphalt pavement/reclaimed asphalt shingle (RAP/RAS) materials. Six commonly discussed intermediate temperature (cracking and durability) performance testing (i.e., Asphalt Mixture Performance Tester [AMPT] Cyclic Fatigue, Cantabro, Illinois Flexibility Index Test [I-FIT], Indirect Tensile Cracking [ITC, also known as IDEAL-CT], Indirect Tensile Nflex, and Texas Overlay Test) were selected for use in this study based on input from stakeholders. Test results were analyzed to compare differences between the cracking tests. In addition, statistical analyses were conducted to assess the separation among materials (lanes) for each performance test. Cyclic fatigue and IDEAL-CT tests showed the most promising results. The ranking from these two tests’ index parameters matched closely with ALF field performance. Furthermore, both showed reasonable variability of test data and they were successful in differentiating between different materials.


2021 ◽  
Vol 11 (9) ◽  
pp. 4029
Author(s):  
Jian Wang ◽  
Pui-Lam Ng ◽  
Yuhua Gong ◽  
Han Su ◽  
Jinsheng Du

Porous asphalt mixture can be used as a road surface paving material with the remarkable advantage to prevent water accumulation and ponding. However, the performance of porous asphalt mixture in low temperature environment has not been thoroughly investigated, and this forms the subject of research in the present study. The mineral aggregate gradation of porous asphalt mixture was designed based on Bailey method, and the low temperature performance of porous asphalt mixture was studied by means of the low temperature bending test. The factors affecting the low temperature performance of porous asphalt mixture were analyzed through the orthogonal experimental design method, and the effects of porosity, modifier content, aging condition, and test temperature on the low temperature performance of porous asphalt mixture were evaluated. The results showed that the modifier content was the most important factor affecting the low temperature performance of porous asphalt mixture, followed by the test temperature, while the porosity and the aging condition were the least. Among the three performance evaluation indicators, namely the flexural tensile strength, maximum bending strain, and bending stiffness modulus, the maximum bending strain had the highest sensitivity to the porosity. It can be seen from the single factor influence test of porosity that there existed an approximately linear relationship between the maximum bending strain and the porosity of porous asphalt mixture, and the maximum bending strain decreased with increasing porosity. Furthermore, in order to ensure the good working performance of porous asphalt mixture in low temperature environment, the porosity should also satisfy the required limits of the maximum bending strain.


Sign in / Sign up

Export Citation Format

Share Document