scholarly journals Risk Assessment of Electricity Price Considering Guaranteed Accommodation of Renewable Energy in Electricity Market

2021 ◽  
Vol 838 (1) ◽  
pp. 012003
Author(s):  
Siying Li ◽  
Maosheng Sang ◽  
Jie He ◽  
Luosong Jin ◽  
Wen Zhao ◽  
...  
2018 ◽  
Vol 6 (3) ◽  
pp. 193-213 ◽  
Author(s):  
Jiaping Xie ◽  
Weisi Zhang ◽  
Yu Xia ◽  
Ling Liang ◽  
Lingcheng Kong

Abstract In the existing electricity market, the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side, renewable energy generators generate power by wind and other natural conditions, leading renewable energy output a certain randomness. However, the low marginal generating cost and the reduction of carbon emissions, and thus brings a certain advantage for renewable energy compared to alternative energy. Electricity, as a special commodity, stable and adequate power supply is a necessary guarantee for economic and social development. Power shortage situation is not allowed in the power system, and the extra power needs to be handled for the purpose of safety. In this paper, the hybrid power generated by renewable energy generators and traditional energy generators is used as power supply, and then the electricity market sells hybrid power to electricity consumers, the hybrid power system determines the optimal daytime price, nighttime price, and the optimal installed capacity of the renewable energy suppliers. We find that the installed capacity of renewable energy increases first and then decreases with the increase of the price sensitivity coefficient of traditional energy supply. Electricity demand is negatively related to electricity price in the current period, and is positively related to price in the other period. The average price of day and night is only related to the total potential demand of day and night and the total generation probability of renewable energy. The price difference between daytime and nighttime is positively related to potential electricity demand, and negatively related to the sensitivity coefficient of electricity price.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6233
Author(s):  
Martina Assereto ◽  
Julie Byrne

Policy and electricity price uncertainty provide disincentives to investors considering renewable energy investments. While electricity price uncertainty impacts on investment decisions relating to any energy investment, whether renewable or non-renewable, policy uncertainty will affect renewable energy investment decisions to a far greater extent. In this study, we consider the two main sources of uncertainty a solar Photovoltaic (PV) project is exposed to: electricity price uncertainty and policy uncertainty. We focus our analysis on utility-scale solar photovoltaics in the Pennsylvania, Jersey, Maryland Power Pool (PJM) electricity market and the New Jersey Solar Renewable Energy Credit (SREC) market. Using Solar Renewable Energy Credits as a proxy for policy, we find that there is considerable volatility in both electricity prices and policy. In a sample covering eleven years, we implement univariate Generalized Autoregressive Conditional Heteroskedastic (GARCH) and combinations of GARCH models with different weighting schemes and find that combination models provide superior forecasts. In renewable energy markets, policy supports have a significant impact on an investment’s profitability. The implication for policymakers is clear: to foster investment in solar PV, policy stability is critical.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2347
Author(s):  
Heike Scheben ◽  
Nikolai Klempp ◽  
Kai Hufendiek

Renewable energy shares in electricity markets are increasing and therefore also require an increase in flexibility options. Conventional electricity price modelling with optimisation models in thermally dominated markets is not appropriate in markets with high shares of renewable energies and storages because price structures are not adequately represented. Previous research has already identified the impact of uncertainty in renewable energy feed-in on investment and dispatch decisions. However, we are not aware of any work that investigates the influence of uncertainties on price structures by means of optimisation models. Appropriate modelling of electricity price structures is important for investment and policy decisions. We have investigated the influence of uncertainty concerning water inflow by applying a second stage stochastic dual dynamic programming approach in a linear optimisation model using Norway as an example. We found that the influence of uncertainty concerning water inflow combined with high shares of storages has a strong impact on the electricity price structures. The identified structures are highly influenced by seasonal water inflow, electricity demand, wind, and export profiles. Additionally, they are reinforced by seasonal primary energy source prices and import prices. Incorporating uncertainties in linear optimisation models improves the price modelling and provides, to a large extent, an explanation for the seasonal patterns of Norwegian electricity market prices. The paper explains the basic pricing mechanisms in markets with high shares of storages and renewable energies which are subject to uncertainty. To identify these fundamental mechanisms, we focused on uncertainty regarding water inflow, but the basic results hold true for uncertainties regarding other renewable energies as well.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3860
Author(s):  
Priyanka Shinde ◽  
Ioannis Boukas ◽  
David Radu ◽  
Miguel Manuel de Manuel de Villena ◽  
Mikael Amelin

In recent years, the vast penetration of renewable energy sources has introduced a large degree of uncertainty into the power system, thus leading to increased trading activity in the continuous intra-day electricity market. In this paper, we propose an agent-based modeling framework to analyze the behavior and the interactions between renewable energy sources, consumers and thermal power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel adaptive trading strategy that can be used by the agents that participate in CID market. The agents learn how to adapt their behavior according to the arrival of new information and how to react to changing market conditions by updating their willingness to trade. A comparative analysis was performed to study the behavior of agents when they adopt the proposed strategy as opposed to other benchmark strategies. The effects of unexpected outages and information asymmetry on the market evolution and the market liquidity were also investigated.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3922
Author(s):  
Bernadette Fina ◽  
Hubert Fechner

The Renewable Energy Directive and the Electricity Market Directive, both parts of the Clean Energy for all Europeans Package (issued in 2019), provide supranational rules for renewable energy communities and citizen energy communities. Since national transpositions need to be completed within two years, Austria has already drafted corresponding legislation. This article aims at providing a detailed comparison of the European guidelines and the transposition into Austrian law. The comparison not only shows how, and to what extent, the European guidelines are transposed into Austrian law, but also helps to identify loopholes and barriers. The subsequent discussion of these issues as well as positive aspects of the Austrian transposition may be advantageous for legislators and policy makers worldwide in their process of designing a coherent regulatory framework. It is concluded that experts from different areas (i.e., project developers, scientists concerned with energy communities, energy suppliers and grid operators) should be closely involved in the law-making process in order to introduce different perspectives so that a consistent and supportive regulatory framework for energy communities is created.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Sign in / Sign up

Export Citation Format

Share Document