energy investment
Recently Published Documents


TOTAL DOCUMENTS

544
(FIVE YEARS 226)

H-INDEX

40
(FIVE YEARS 11)

Author(s):  
Fang Wang ◽  
Weixiang Lv

Abstract Migratory insects display diverse behavioral strategies in response to external environmental shifts, via energy allocation of migration-reproduction trade-offs. However, how migratory insects distribute energy between migration and reproduction as an adaptive strategy to confront temporary low temperatures remains unclear. Here, we used Mythimna separata, a migratory cereal crop pest, to explore the effects of low temperature on reproductive performance, behavior, and energy allocation. We found that the influence of low temperatures on reproduction was not absolutely negative, but instead depended on the intensity, duration, and age of exposure to low temperature. Exposure to 6°C for 24 h significantly accelerated the onset of oviposition and ovarian development, and increased the synchrony of egg-laying and lifetime fecundity in 1-day-old adults compared to the control, while female's flight capacity decreased significantly on the first and second day after moths were exposed to 6°C. Furthermore, the abdominal and total triglycerides levels of females decreased significantly from exposure to low temperature, but their thoracic triglyceride content was significantly higher than the control on the third and fourth day. These results indicated that low temperatures induced M. separata to reduce energy investment for the development of flight system. This resulted in the shifting of moths from being migrants to residents during the environmental sensitive period (first day post-emergence). This expands our understanding of the adaptive strategy employed by migratory insects to deal with low temperatures and aids in the management of this pest species in China.


2022 ◽  
Author(s):  
Ioannis Pappis

Abstract Strategic energy planning to achieve universal access and cover the future energy needs in each African nation is essential to lead to effective, sustainable energy decisions to formulate mitigation and adaptation climate change policy measures. Africa can not afford a cost-increasing green energy transition pathway towards achieving SDG7. In this analysis, least-cost power generation investment options using energy systems analysis enhanced with geospatial data for each African nation are identified, considering different levels of electricity consumption per capita (Low, High) and costs of renewables (New Policies, Renewable Deployment scenarios). The power generation capacity needs to increase between 211GW (NPLs) and 302GW (RDHs) during 2021-2030 to achieve SDG7 in Africa, leading to electricity generation to rise between 6,221PJ (NPLs) - 7,527PJ (NPHs) by 2030. Higher electricity consumption levels lead to higher penetration of fossil fuel technologies in the power mix of Africa. To achieve the same electricity demand levels, decreasing renewables' costs can assist in a less carbon-intensive power system, although higher capacity is needed. However, Africa is still hard to achieve its green revolution. Depending on the scenario, grid-connected technologies are estimated to supply approximately 85%-90% of the total electricity generated in Africa in 2030, mini-grid technologies roughly 1%-6%, and stand-alone technologies 8%-11%. Solar off-grid and solar hybrid mini-grid technologies play an essential role in electrifying the current un-electrified settlements in residential areas. Natural gas will be the dominant fossil fuel source by 2030, while the decreasing costs of renewables make solar overtake hydropower. Higher penetration of renewable energy sources in the energy mix creates local jobs and increases cost-efficiency. Approximately 6.9 million (NPLs) to 9.6 million (RDHs) direct jobs can be created in Africa by expanding the power sector during 2020-2030 across the supply chain. Increasing the electricity consumption levels in Africa leads to higher total system costs, but it is estimated to create more jobs that can ensure political and societal stability. Also, the decreasing costs of renewables could further increase the penetration of renewables in the energy mix, leading to a higher number of jobs.


Oecologia ◽  
2021 ◽  
Author(s):  
Irene Fernández-Rodríguez ◽  
Florentino Braña

AbstractThe balance of energy allocated to development and growth of different body compartments may incur allocation conflicts and can thereby entail physiological and evolutionary consequences. Regeneration after autotomy restores the functionality lost after shedding a body part but requires a strong energy investment that may trade-off with other processes, like reproduction or growth. Caudal autotomy is a widespread antipredator strategy in lizards, but regeneration may provoke decreased growth rates in juveniles that could have subsequent consequences. Here, we assessed the growth of intact and regenerating hatchling wall lizards (Podarcis muralis) exposed to different food regimens. Regenerating juveniles presented slightly but significantly lower body growth rates than individuals with intact tails when facing low food availability, but there were no differences when food was supplied ad libitum. Regenerating individuals fed ad libitum increased their ingestion rates compared to intact ones during the period of greatest tail growth, which also reveals a cost of tail regeneration. When resources were scarce, hatchlings invested more in tail regeneration in relation to body growth, rather than delay regeneration to give priority to body growth. We propose that, in juvenile lizards, regeneration could be prioritized even at the expense of body growth to restore the functionality of the lost tail, likely increasing survivorship and the probability to reach reproductive maturity. Our study indicates that food availability is a key factor for the occurrence of trade-offs between regeneration and other growth processes, so that environmental conditions would be determinant for the severity of the costs of regeneration.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8218
Author(s):  
Monika Foltyn-Zarychta

Energy-related investments gain increasing attention nowadays, particularly in Poland due to clean-energy investment needed to limit greenhouse gas emissions (GHG) and counteract climate change. However, economic appraisal is problematic: the longevity of impacts inextricably involves intergenerational ethical considerations. A crucial parameter is the choice of a discount rate. The predominant approach to estimate the discount rate in EU countries is the Ramsey rule, based on macroeconomic data, but not referring directly to society’s preferences. Those are considered by studies using surveys to elicit individual discount rates (IDR), but rarely concentrating on intergenerational time frame. The paper aims at delivering an insight into the intergenerational intertemporal preferences for Poland (households, n = 471) focusing on whether respondents are willing to declare zero discount rate intergenerationally and whether their choices differ between the short- and long-term perspectives and between human lives and money. To elicit IDR, two hypothetical investment scenarios were designed: lifesaving programs and lottery gains with delays from 10 to 150 years accompanied by attitude and socioeconomic questions. The results indicate that IDR follows hyperbolic time-decline, and a considerable share of respondents (around 20%) are willing to treat future generations as equally important in the case of human lives, while this proportion for monetary gains is two times lower. The IDR drivers differ between lives and money in respect of socioeconomic profile and attitude characteristics as well as between intragenerational and intergenerational time frames. The findings support (a) the rationale for distinct treatment of intergenerational allocations, (b) the divergence of preferences between public and private impacts, and (c) the switch from single to declining discount rate regime in Poland.


2021 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Bjarnhedinn Gudlaugsson ◽  
Tariq Ahmed ◽  
Huda Dawood ◽  
Chris Ogwumike ◽  
Nashwan Dawood

Cost–benefit analysis is a common evaluation method applied to assess whether an energy system is economically feasible as well as the economic viability of energy investment for the energy transition of a pre-existing energy system. This paper focuses on examining the economic costs and benefits obtained through the implementation of renewable energy and smart technology to a pre-existing energy system of two pilot sites—St. Jean and Barcelona. The evaluation process includes all relevant parameters such as investment, operating and maintenance costs, and energy prices needed to assess the economic feasibility of the investment. The results show that investing in energy system development towards a decarbonized future, can provide various benefits such as increased flexibility, and reduced emissions while being economically feasible.


2021 ◽  
Vol 180 ◽  
pp. 1278-1289
Author(s):  
Jamal Hussain ◽  
Kui Zhou ◽  
Faqir Muhammad ◽  
Danish Khan ◽  
Anwar Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document