scholarly journals The Effect of Water-Binder Ratio on The Unconfined Compression Strength of Lime Treated Expansive Soils

2021 ◽  
Vol 841 (1) ◽  
pp. 012008
Author(s):  
D Pinasang ◽  
T Harianto ◽  
A B Muhiddin ◽  
A A Amiruddin
2021 ◽  
Author(s):  
Jing Ni ◽  
Shan-Shan Li ◽  
Lei Ma ◽  
Xueyu Geng

Recently, biopolymers have emerged in soil stabilisation. The efficiency of biopolymers in groundimprovement is mainly dependent on biopolymer types, soil types, biopolymer contents, curing periods,thermal treatment and mixing methods. However, the effect of the initial moisture content during samplepreparation stages, on the mechanical behaviours of biopolymer-treated soils, has not been fullyunderstood. The first part of this study probed the role of initial moisture content, in treating Shanghaiclay with the xanthan gum by performing standard proctor compaction tests, Atterberg limit tests,unconfined compression strength (UCS) tests and microstructural analysis, while the second part contributedto capture the fatigue behaviours of the samples treated with an ideal moisture content by performingconstant-amplitude and stepping-amplitude fatigue loading tests. Our results showed that theimprovement appeared to occur from an average optimum moisture content for the treated soils (treatedoptimum), which was 3% wet of the untreated optimum. As the initial moisture content increased, theUCS values were elevated. However, there existed an ideal initial moisture content leading to the maximumstrengthening efficiency. For xanthan gum content (i.e., the mass of xanthan gum with respect tothe mass of dry soil) ranging from 1.0% to 5.0%, this ideal value was between 1.1 and 1.2 times the treatedoptimum. Our results also indicated that xanthan gum, as a biopolymer soil strengthener, was efficient inincreasing either fatigue life or bearing capacity, under repeated loading for xanthan gum-soil matrices,when compared to untreated soils. While the untreated soils failed at the stress level of only half the UCS,the xanthan gum-treated soils with a 3.0% xanthan gum content sustained at the end of the tests. Thesedata imply the potential use of xanthan gum in soil stabilisation, under repeated loads.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Ateş

Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4%) and cement (10%, 20%, 30%, and 40%) were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.


2011 ◽  
Vol 306-307 ◽  
pp. 942-945
Author(s):  
Wang Lin Li ◽  
Ying Te Li ◽  
Jian Ying Yu

Concrete lining is commonly used in large channel project to fixup soil slope and prevent channel seepage. Concrete lining is a type of thin plates structure which should have the high compression strength, crack resistance and durability. Two new high performance concrete (HPC) are used in lining project of south main channel of Yellow River-crossing project in east-route of the South-to-North Water Diversion Project. One is flyash HPC with manufactured-sand and the other is HPC with cementitious capillary crystalline waterproofing material (CCCW); meanwhile, the mix proportion of flyash HPC with manufactured-sand and HPC with CCCW are recommended. For flyash HPC with manufactured-sand, the recommendatory water-binder ratio is 0.4 and the recommendatory flyash content is 30%. For HPC with CCCW, the recommendatory water-binder ratio is 0.48 and the recommendatory CCCW content is 1.5%.With the wide application of new HPC, the compression strength, crack resistance and durability of lining concrete are improved, channel seepage discharge is reduced and a large amount of natural building materials are saved.


Sign in / Sign up

Export Citation Format

Share Document