scholarly journals Facade control systems for optimal daylighting: A case of Kerala

2021 ◽  
Vol 850 (1) ◽  
pp. 012014
Author(s):  
Govind Dev ◽  
Aysha Saifudeen ◽  
Aparna Sathish

Abstract Indoor environmental quality is one of the most important aspects to be considered while designing buildings. Design decisions taken to ensure indoor environmental quality depends upon the specific location, climate, form, orientation and materials used for the construction of the building. In addition to ensuring comfort and optimal occupant conditions, these design decisions also impact the overall energy consumption of the building. The design of the building envelope is of more importance in regions that receive a huge amount of solar radiation. Kerala, falling in the Tropical belt, have buildings designed (or supposed to be designed) with sufficient roofing/shading overhangs to avoid penetration of solar radiation, and direct glare towards the inside. Well-designed shading devices provide the best shading during overheated periods thus lesser heat gain or cooling load. The form of shading devices influences day-lighting inside the building. This paper intends to explore different types of shading devices and façade control systems, and their impact on daylighting inside a selected commercial building in Kerala. It concludes by identification of the most efficient design of the device in each type identified, through BIM modelling and lighting simulation, specific to the original building location, to ensure optimal daylighting while eliminating the undesirable effects of solar radiation.

2019 ◽  
Vol 11 (4) ◽  
pp. 1078 ◽  
Author(s):  
Carmen Calama-González ◽  
Rafael Suárez ◽  
Ángel León-Rodríguez ◽  
Simone Ferrari

In the Mediterranean climate, a large number of educational buildings suffer from discomfort due mostly to energy-deficient thermal envelopes and a lack of cooling systems. Impending climate change is expected to worsen overheating in classrooms, especially during heatwave periods. Therefore, the protection of window openings to reduce incident solar radiation while maintaining adequate indoor environmental quality must be considered a necessary key focus. The main objective of this research is to assess the influence of an egg-crate shading device on the indoor environmental quality of a classroom in Southern Spain. To do so, two classrooms—with and without this shading device—were simultaneously monitored over a whole year. The implementation of an egg-crate shading device allowed for a significant reduction of the incident solar radiation, both in summer and mid-season (around 45–50%), which objectively slightly conditioned indoor operative temperatures. Given the noticeable influence of the user patterns observed, indoor illuminance was also improved, as the rolling shutters tended to be opened at higher aperture levels.


2020 ◽  
Vol 12 (2) ◽  
pp. 482 ◽  
Author(s):  
Francesco Mancini ◽  
Fabio Nardecchia ◽  
Daniele Groppi ◽  
Francesco Ruperto ◽  
Carlo Romeo

The energy refurbishment of the existing building heritage is one of the pillars of Italian energy policy. Aiming for energy efficiency and energy saving in end uses, there are wide and diversified improvement strategies, which include interventions on the building envelope and Heating, Ventilation, and Air Conditioning (HVAC) systems, with the introduction of renewable energy sources. The research aims at evaluating the building energy consumptions and Indoor Environmental Quality (IEQ), varying the airflow rates handled by the HVAC system. A Case Study (the Aula Magna of a university building) is analysed; an in-situ monitoring campaign was carried out to evaluate the trend of some environmental parameters that are considered to be significant when varying the external airflow rates handled by the HVAC system. Additionally, dynamic simulations were carried out, with the aim of evaluating the energy savings coming from the airflow rates reduction. The results of this case study highlight the opportunity to achieve significant energy savings, with only slight variations in IEQ; a 50% reduction in airflow rate would decrease energy consumption by up to 45.2%, while increasing the carbon dioxide concentration from 545 ppm to 655 ppm, while the Particulate Matter and Total Volatile Organic Compounds increase is insignificant.


2020 ◽  
Vol 12 (7) ◽  
pp. 2995 ◽  
Author(s):  
Mushk Bughio ◽  
Thorsten Schuetze ◽  
Waqas Ahmed Mahar

Poor Indoor Environmental Quality (IEQ) adversely affects the performance and health of building users. Building users are an important source of information regarding IEQ and its influence on users’ wellbeing and productivity. This paper discusses the analysis and evaluation of IEQ in lecture halls of two public Architectural Campus Buildings (ACB) in Karachi, Pakistan. The method of this research is divided into three parts: (i) An analysis of local climate conditions, (ii) An on-site survey of two existing ACBs to analyze indoor environmental conditions. and (iii) The analysis of users’ satisfaction using a questionnaire survey. The research results showed that users are dissatisfied with existing hot and humid indoor environment conditions caused by interactions of local outdoor climate conditions, the building’s architecture, and inadequate ventilation within the building. The findings revealed that Karachi has 41.3% comfort hours with the warm sub-humid season to be the most comfortable season having 80.56% comfort hours. IEQ analysis unveiled that airflow in ACB1 is low, whereas, high airflow is observed in ACB2. The findings of this research unveiled that cross-ventilation by the adapted placement of openings, improved external shading devices, and provision of increased vegetation are required in both ACBs to achieve a more comfortable IEQ.


2018 ◽  
Vol 42 (5) ◽  
pp. 672-691 ◽  
Author(s):  
David W Yarbrough ◽  
Mark Bomberg ◽  
Anna Romanska-Zapala

The discussion in this article starts in the 1920s, that is, at the time of the humble beginnings of building science and brings us to 2020s with the development of net-zero energy buildings. The knowledge accumulated by explaining observed failures in the practice of construction slowly formed a basis for moving toward a predictive capability and to an integration of modeling and testing. Furthermore, we have learned that interactions between energy efficiency, indoor environmental quality, and moisture management are so critical that the three issues must be considered simultaneously. Effectively, a change in the low energy is needed to ensure durability of materials and cost considerations for these buildings. At this stage, one could observe a clear change in the mind-set of the scientific community. Forty years after construction of the first 10 passive homes, we made a shocking observation—an adequate technology has been developed, but our lack of vision prevents effective use of this technology. Again, we need to modify our vision and change the design paradigm to balance comfort, building durability, and cost-effectiveness. If the quest for sustainable buildings is our ultimate objective, then we should learn more from the surrounding nature; termites appear to master the art of hygrothermal control better than humans because they can optimize transient conditions to maintain a stable interior comfort zone. Thus, in the article to follow a new compact building envelope design package is proposed, applicable to different climates with specific modifications of critical hygrothermal material properties. This approach is called the Environmental Quality Management. This will be the second step for a building science (physics) needed to become a leading force in the transition to sustainable built environments.


1999 ◽  
Author(s):  
S. Reynolds ◽  
P. Subramanian ◽  
G. Breuer ◽  
M. Stein ◽  
D. Black ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document