scholarly journals The feasibility of animal source foods’ color measurement using CVS

2021 ◽  
Vol 854 (1) ◽  
pp. 012060
Author(s):  
Bojana Milovanovic

Abstract Color assessment of animal source foods was investigated using a computer vision system (CVS) and a traditional colorimeter. With the same measurement conditions, color readings varied between these two approaches. The color measured by CVS was highly similar to the actual color of animal source foods, and ranged from 75.0%-100.0% of actual colors, whereas colors read by a Minolta colorimeter showed non-typical appearances. The CVS-obtained colors were more similar to the color of food visualized on the monitor, compared to colorimeter-generated color chips. Considering these results, it could be concluded that the CVS is a superior alternative for replacing traditional devices by providing better accuracy.

2022 ◽  
Vol 6 (4) ◽  
pp. 311-319
Author(s):  
B. R. Milovanovic ◽  
I. V. Djekic ◽  
V. M. Tomović ◽  
D. Vujadinović ◽  
I. B. Tomasevic

Rapid and objective assessment of food color is necessary in quality control. The color evaluation of animal source foods using a computer vision system (CVS) and a traditional colorimeter is examined. With the same measurement conditions, color results deviated between these two approaches. The color returned by the CVS had a close resemblance to the perceived color of the animal source foods, whereas the colorimeter returned not typical colors. The effectiveness of the CVS is confirmed by the study results. Considering these data, it could be concluded that the colorimeter is not representative method for color analysis of animal source foods, therefore, the color read by the CVS seemed to be more similar to the real ones.


2020 ◽  
Vol 40 (1) ◽  
pp. 21
Author(s):  
Ferlando Jubelito Simanungkalit ◽  
Rosnawyta Simanjuntak

Color had a correlation with physical appearance, nutritional and chemical content as well as sensory properties which determine the quality of agricultural products and foods. Conventional color measurements were performed destructively using laboratory equipment. Therefore, color measurement methods of agricultural products were needed more quickly, accurately and non-destructively. This study aimed to develop a Computer Vision System (CVS) that can be used as a tool to measure the color of fruits. The designed CVS consists of a 60x60x60 cm black mini photo studio; a pair 15 watt LED lighting, sony α6000 digital camera, a set of laptop and an image processing software applications. Image processing software was programmed using VB.Net 2008 programming language. The developed CVS was calibrated using 24 color charts Macbeth Colorchecker (Gretag-Macbeth, USA). The calibration results of 24 color chart of Macbeth Colorchecker was resulted in a MAPE (Mean Absolute Percentage Error) value of component R / Red = 0%; G / Green = 0% and B / Blue = 0,5%; with 99% accuracy rate. In color measurement, the developed CVS had a 95% accuracy rate.


2016 ◽  
Vol 07 (06) ◽  
pp. 327-334 ◽  
Author(s):  
Yoshio Makino ◽  
Kenjiro Goto ◽  
Seiichi Oshita ◽  
Akari Sato ◽  
Masato Tsukada

2021 ◽  
pp. 105084
Author(s):  
Bojana Milovanovic ◽  
Ilija Djekic ◽  
Jelena Miocinovic ◽  
Bartosz G. Solowiej ◽  
Jose M. Lorenzo ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 343
Author(s):  
Kim Bjerge ◽  
Jakob Bonde Nielsen ◽  
Martin Videbæk Sepstrup ◽  
Flemming Helsing-Nielsen ◽  
Toke Thomas Høye

Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 387
Author(s):  
Martin Choux ◽  
Eduard Marti Bigorra ◽  
Ilya Tyapin

The rapidly growing deployment of Electric Vehicles (EV) put strong demands on the development of Lithium-Ion Batteries (LIBs) but also into its dismantling process, a necessary step for circular economy. The aim of this study is therefore to develop an autonomous task planner for the dismantling of EV Lithium-Ion Battery pack to a module level through the design and implementation of a computer vision system. This research contributes to moving closer towards fully automated EV battery robotic dismantling, an inevitable step for a sustainable world transition to an electric economy. For the proposed task planner the main functions consist in identifying LIB components and their locations, in creating a feasible dismantling plan, and lastly in moving the robot to the detected dismantling positions. Results show that the proposed method has measurement errors lower than 5 mm. In addition, the system is able to perform all the steps in the order and with a total average time of 34 s. The computer vision, robotics and battery disassembly have been successfully unified, resulting in a designed and tested task planner well suited for product with large variations and uncertainties.


Sign in / Sign up

Export Citation Format

Share Document