scholarly journals Stability Analysis of Surrounding Rock of Large Semi-underground Pump House under Complex Conditions

2021 ◽  
Vol 861 (5) ◽  
pp. 052105
Author(s):  
Shu Zhang ◽  
Anting Wang ◽  
Zhiguo Zhang ◽  
Ming Xiao
2013 ◽  
Vol 353-356 ◽  
pp. 398-402
Author(s):  
Xiao Yu Zhang ◽  
Feng Ming Liu ◽  
Gang Chen

The initial stress of rock is a basic parameter, which can be used for surrounding rock stability analysis, exploitation and support design. By utilizing stress relief method of hollow inclusion with its characters of high precision and obtaining three dimensional stress at one time, we have measured three dimensional stress magnitude and direction in north wing roadway (-850m) and 710 open-off cut (-1000m), respectively. The results show that the horizontal tectonic stress is obvious in this coal area.


2020 ◽  
Vol 165 ◽  
pp. 03025
Author(s):  
Jing Liu ◽  
Xiaomin Liu ◽  
Shengjie Di ◽  
Xi Lu

The large and medium-sized hydropower projects underground cavern group are basically in relatively integrate surrounding rock, so there are few engineering examples in layered surrounding rock with type III surrounding rocks as the main rock, and lack of successful experience. According to rock-bolted crane girder under the layered surrounding rock of a large underground power station, analyzing prototype dynamic monitoring data of the excavation, unloading and load-bearing test .The distribution of the monitoring data conforms to the normal law, and there are no large outliers, under the action of a large number of bolts, rock-bolted crane girder basically forms a good integrity with the layered surrounding rock, and the load-bearing test has no effect on the stress condition and stability condition of surrounding rock.


2011 ◽  
Vol 90-93 ◽  
pp. 1900-1903
Author(s):  
Fu Ming Wang ◽  
Xiao Long Li ◽  
Yan Hui Zhong ◽  
Xiao Guang Chen

Taking Chaijiazhuang Tunnel of Lingnan Expressway as project background, the stability analysis of surrounding rock was performed based on the coupled fluid-solid theory. The distributions of stress field, displacement field and plastic zone of rock mass after excavation of tunnel were discussed considering coupled effect between flow and stress under the condition of different rock level and tunnel depth. Compared with the calculation results of not considering coupling effect, the maximum deformation, maximum principle stress and plastic zone size of wall rock were obviously increased when considering coupling effect, which showed a remarkable influence of coupled fluid-solid effect on the stability of tunnel surrounding rock. Some conclusions were drawn and may provide some guidance to the design and construction of tunnels in water-rich strata.


2013 ◽  
Vol 790 ◽  
pp. 299-305
Author(s):  
Xiao Song Tang ◽  
Yong Fu Wang ◽  
Ying Ren Zheng

The paper adopts the interface element to simulate the joints so as to systematically and quantitatively study the deformation around tunnel, the mechanic state of lining and the stability under different inclining angles of joints. The result shows that the deformation around tunnel deteriorates mainly along the joint during the inner convergence effects of surrounding rock. When the inclining angle α=45°, the deformation around the tunnel is most serious, followed by that when α=90°, α=60°, α=30° and α=0°. At the same time, the influence of inclining angle on the distribution of the axial force of lining is comparatively small. But the distribution of bending moment and shear change obviously where the joints penetrate the tunnel. The tunnel stability of surrounding rock is the poorest when α=90° and the tunnel is most stable when α=0°. The stability of surrounding rock changes little when α is between 30° and 60°. The research result provides an effective calculation method for the forecast of deformation, the design of structure and the stability analysis of jointed tunnel. It is also helpful for the monitoring of construction and calculation of jointed tunnel in the future.


2013 ◽  
Vol 353-356 ◽  
pp. 415-420 ◽  
Author(s):  
Guo Ren Lu ◽  
Le Wen Zhang ◽  
Dao Hong Qiu ◽  
Xiao Feng

The ideal point method is a kind of multiple-goal decision analysis method, the basic idea is to construct the ideal and anti-ideal solution of multi attribute problem, with degree that near ideal solution and away from the anti-ideal solution as the basis to judge each evaluation object. Based on the basic principle of ideal point method, and comprehensive consideration of the actual geological conditions of Qingdao metro, we selected rock compressive strength, integrity coefficient, structure surface behavior, groundwater and softening coefficient as the evaluation factors of surrounding rock stability, and used the rough set theory to determine the index weight. At last, established the evaluate model for the surrounding rock stability of metro based on the rough set efficacy coefficient method. The research show that the stability analysis results are consistent with the actual excavation, so using rough set efficacy coefficient method to analysis surrounding rock stability of Qingdao Metro is feasible, which provides a new idea for the stability analysis of surrounding rock.


2012 ◽  
Vol 446-449 ◽  
pp. 2101-2104
Author(s):  
Yu Suo Wang ◽  
Zheng Qun Wu ◽  
Mao Hong Li ◽  
Qi Xin Yang

Measurement of the loose zone of tunnel surrounding rock is of great significance in the determination of its support measures and stability analysis. By identifying the loose zone, the effective measures can be adopted to ensure a safe tunnel construction. The ultrasonic test is conducted to the TBM construction of Zhongtianshan Tunnel to specify the disturbance range of the TBM construction on the surrounding rock and the anchoring lengths of bolts.


2020 ◽  
Vol 27 (10) ◽  
pp. 3040-3052
Author(s):  
Jian-yun Lin ◽  
Yu-jun Zuo ◽  
Jian Wang ◽  
Lu-jing Zheng ◽  
Bin Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document