rock foundation
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 35)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Koushik Kanti Barman ◽  
Swaroop Nandan Bora

The association of oblique surface gravity waves with a caisson-type multi-chamber porous breakwater fitted with a perforated front wall in a two-layer fluid is studied in finite ocean depth with an elastic bottom. This study focuses on the influence of porous parameters of the interface-piercing structure on wave attenuation in surface and interfacial modes. The flexural gravity wave motion establishes the influence of the elastic bottom. The reflection coefficients for waves in both modes are evaluated to show their effects on the free surface and interface elevations and the waveloads. Consequently, the appropriateness of various configurations of the structure on the wave scattering is studied. Due to wave dissipation by the structure, less waveload is detected on the stiff wall and less elevation is noticed in the porous zone. The structure’s multi-chamber division allows it to have more dissipative and reflective properties. Adjustment of the structure’s height, breadth, and porous parameter leads to achieving good amount of wave reflection and maximum energy dissipation. An optimal width can be determined for a suitable configuration of the structure so that a breakwater can be built with an acceptable level of reflection and dissipation characteristics. The shear force and bottom deflection show how elastic parameters of the sea-floor affect wave scattering.


2021 ◽  
Author(s):  
Jin Xu ◽  
Yansen Wang

Abstract In this study, numerical simulations were carried out to analyze the influence of caves in different positions and shapes, in combination with structural planes, on the stability of the slope and the failure characteristics of a rock slope in a deep foundation pit with high inclination structural planes and cave development. The schemes for substituting a single karst cave for karst caves were constructed. Based on the penetration failure characteristics of karst caves between parallel structural planes, methods for calculating the safety factor of the rock foundation pit and the upper bound of the lateral pressure of the supporting structure under the combined influence of the caves and structural planes were developed, which can be used to assess the safety factor of a rock mass and to calculate the lateral pressure under complex geological conditions.


JURNAL KADESI ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 65-89
Author(s):  
Feri Dolf Djami Hae ◽  
B.D Nainggolan ◽  
Stimson Hutagalung ◽  
Rolyana Ferinia

Jesus asked his disciples, saying, “Whom do men say that I the Son of man am?” (Matt. 16:13, Mark. 8:27), then John the Baptist was the top answer, followed by Elijah, Jeremiah. This study uses a biblical study of the meaning of the whom do men say (general opinion) by using a qualitative writing method that is studied by biblical exegesis supported by various sources related to this research. Here it is found that public opinion greatly influences one's personal belief and confession of their faith in Jesus Christ. There is a meaning behind the rejection of Jesus' messiahship by carrying the popular John the Baptist figure. Perhaps if he announced himself as the Messiah, and waged a rebellion against the Roman empire which was colonizing Israelit at that time, it would be inconceivable if that happened. Researchers found the answer that the importance of personal spiritual experience closely with God between times when the truth became unpopular. By adhering to the Word of God, the Church of God can stand firm which is built on a solid rock foundation (Petra), namely Jesus Himself.


Author(s):  
Suihan Zhang ◽  
Fredrik Johansson ◽  
Håkan Stille

AbstractGrout curtains are commonly constructed under dams to reduce the seepage through the rock foundation. In the design of grout curtains, empirical methods have mainly been used since the introduction of dam foundation grouting. Although empirical methods have been used with success in several projects, they have their limitations, such as poor control of the grout spread, only an indirect consideration of the threat of internal erosion of fracture infillings in the grouted zones, and the risk of hydraulic jacking. This paper presents a theory-based design methodology for grout curtains under dams founded on rock. In the design methodology, the grout curtain is designed as a structural component of the dam. The risk of erosion of fracture infilling material is explicitly accounted for along with the reduction of the hydraulic conductivity of the rock mass, and an optimization of the total uplift force. By applying the proposed design methodology, engineers can create a design better adapted to the prevailing geological and hydrogeological conditions in the rock mass, resulting in more durable grout curtains. The proposed methodology also enables cost and time estimates to be calculated for the grout curtain’s construction. Applying the principles of the observational method during the grouting execution also allows the design to be modified via predefined measures if the initial design is found to be unsuitable.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Ivan Khokhlov ◽  
Mikhail Zertsalov

Interaction peculiarities of a single unit bored pile with the surrounding rock mass under the horizontal load effect, as well as loss mechanism of piles bearing capacity, are considered. The article presents the numerical modeling results and a method developed on their basis for calculating piles in rocky soils under the horizontal load effect under the spatial elastic-plastic problem conditions, with the account of the contact behavior between the pile and the rock mass. The study of the single unit bored pile interaction and the surrounding rock mass under the horizontal and moment loads effect was carried out based on the numerical models’ analysis of the piles and the surrounding rock mass in a spatial setting using the finite element method. The use of regression analysis methods made it possible, to obtain parametric equations, based on the numerical modeling obtained results, that connected the studied response functions (bearing capacity and horizontal displacement of the pile) from preselected independent factors reflecting the geomechanical properties of the body and the design piles peculiarities. The developed calculation method allows at the preliminary design stage to estimate the horizontal pile displacement value, as well as its bearing capacity. Also, using the proposed technique, it is possible to make a piles load test schedule, which can be used in the field observation preparation at the design stage. The relevance of the topic is due to the fact that in modern construction practice, bored piles are used to transfer to the foundation significant loads, on the rock foundation from structures for various purposes, including transport (bridges and overpasses piers’ foundations, etc.).


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1019
Author(s):  
Zongyuan Ma ◽  
Faning Dang ◽  
Hongjian Liao

The bearing capacity for footings is a fundamental scientific problem in civil engineering. The evaluation of the bearing capacity of footings usually does not take into account the effect of the intermediate principal stress. In practice, the intermediate principal stress has certain influences on the strength of geomaterials (e.g., rock and soil) or concrete. In this paper, a series of numerical solutions are presented to evaluate the bearing capacity of footings in a soft rock foundation via a two-dimensional finite difference code (FLAC) with a strain hardening/softening constitutive model based on the unified strength theory (UST). The values of the bearing capacity factor Nc and Nγ for strip, circular and square footings in a soft rock foundation were evaluated using the strain hardening/softening constitutive model. The effect of the intermediate principal stress on the bearing capacity of strip, circular and square footings in a soft rock foundation was analyzed. The results of the numerical computation show that the intermediate principal stress has a significant influence on the bearing capacity and failure mechanisms of a soft rock medium. The influence of the intermediate principal stress on the peak and residual values of the bearing capacity for a strip footing is much greater than for circular and square footings. Research works for the reasonable estimation of the bearing capacity of footings in soft rock are facilitated by this study.


Author(s):  
Bronstein Vadim Izrailovich ◽  
Vainberg Alexander Isaakovich ◽  
Gaziev Erast Grigorievich ◽  
Landau Yuri Alexandrovich ◽  
Mgalobelov Yuri Borisovich ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Bronstein Vadim Izrailovich ◽  
Vainberg Alexander Isaakovich ◽  
Gaziev Erast Grigorievich ◽  
Landau Yuri Alexandrovich ◽  
Mgalobelov Yuri Borisovich
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Denghong Chen ◽  
Chunping Hou ◽  
Feng Wang

Dynamic dam-foundation interaction is great important in the design and safety assessment of the dam structures. Two classic boundary conditions, i.e., the viscous-spring boundary and the viscous boundary, are employed to consider the radiation damping of the unbounded rock foundation. The input models of seismic excitation of the viscous-spring boundary and the viscous boundary are derived. The accuracy of the two boundary conditions in the dynamic analysis of the dam foundation is verified through the foundation analysis using an impulsive load. The influences of two boundary conditions and their earthquake input models on the seismic analysis of the Pine Flat and Jin’anqiao gravity dam-foundation-reservoir systems are then investigated. The results of displacements, hydrodynamic pressure, and principal stresses show that the agreement between the results of the viscous-spring boundary and viscous boundary is good. The relative errors of the two models in the Pine Flat and Jin’anqiao gravity dams are both less than 5%. They are both acceptable from an engineering point of view.


Sign in / Sign up

Export Citation Format

Share Document