scholarly journals Spatial temporal analysis for potential wave energy resources in Indonesia

2021 ◽  
Vol 893 (1) ◽  
pp. 012050
Author(s):  
M N Habibie ◽  
M A Marfai ◽  
H Harsa ◽  
U A Linarka

Abstract Future energy becomes a concern all over the country. The fossil energy resources are decreasing now, and the exploitation these resources leave behind environmental problems. It was increasing the gas emission of CO2 and affected global warming. Renewable and environmentally friendly energy resource is the right choice to solve the problem. Wave power is one of the marine resources that have an advantage in hight density and continuity. This research aims to investigate the spatial-temporal distribution of wave power potency. This study location between 90°E – 150°E; 15°N – 15°S. We used a hindcast data simulation of WAVEWATCH-III with 0.125° (~14 km) spatial resolution and six-hourly data for 25 years (1991-2015). We determine the potential wave power resources by considering the wave flux, Presence of Exceedance (PE), Coefficient of Variation (Cv), Monthly Variability Index (MV), and Seasonal Variability Index (SV). The result shows that in the open sea, such as the Indian Ocean and Pacific Ocean, contains higher wave power density. The level of stability shows that this area is more stable than the inner sea. The power density changes periodically conducted with the monsoonal cycle. The highest energy flux in the Indian Ocean achieved when Australian monsoon and lowest when Asian monsoon, whereas in the Pacific Ocean, the peak of power density reaches when Asian monsoon onset and the lowest in June-July-August. The most stable level coherent with the highest power density, and the lowest level is in the transition period. Based on this analysis, the most potential areas for wave power development are in Enggano, Lampung, Banten, West Java, Central Java, DIY, East Java until Bali.

2021 ◽  
Author(s):  
Michael Mayer ◽  
Magdalena Alonso Balmaseda

AbstractThis study investigates the influence of the anomalously warm Indian Ocean state on the unprecedentedly weak Indonesian Throughflow (ITF) and the unexpected evolution of El Niño-Southern Oscillation (ENSO) during 2014–2016. It uses 25-month-long coupled twin forecast experiments with modified Indian Ocean initial conditions sampling observed decadal variations. An unperturbed experiment initialized in Feb 2014 forecasts moderately warm ENSO conditions in year 1 and year 2 and an anomalously weak ITF throughout, which acts to keep tropical Pacific ocean heat content (OHC) anomalously high. Changing only the Indian Ocean to cooler 1997 conditions substantially alters the 2-year forecast of Tropical Pacific conditions. Differences include (i) increased probability of strong El Niño in 2014 and La Niña in 2015, (ii) significantly increased ITF transports and (iii), as a consequence, stronger Pacific ocean heat divergence and thus a reduction of Pacific OHC over the two years. The Indian Ocean’s impact in year 1 is via the atmospheric bridge arising from altered Indian Ocean Dipole conditions. Effects of altered ITF and associated ocean heat divergence (oceanic tunnel) become apparent by year 2, including modified ENSO probabilities and Tropical Pacific OHC. A mirrored twin experiment starting from unperturbed 1997 conditions and several sensitivity experiments corroborate these findings. This work demonstrates the importance of the Indian Ocean’s decadal variations on ENSO and highlights the previously underappreciated role of the oceanic tunnel. Results also indicate that, given the physical links between year-to-year ENSO variations, 2-year-long forecasts can provide additional guidance for interpretation of forecasted year-1 ENSO probabilities.


2011 ◽  
Vol 24 (14) ◽  
pp. 3593-3608 ◽  
Author(s):  
Dongliang Yuan ◽  
Jing Wang ◽  
Tengfei Xu ◽  
Peng Xu ◽  
Zhou Hui ◽  
...  

Abstract Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.


Zootaxa ◽  
2010 ◽  
Vol 2667 (1) ◽  
pp. 64 ◽  
Author(s):  
SABYASACHI SAUTYA ◽  
KONSTANTIN R. TABACHNICK ◽  
BABAN INGOLE

A new species of Hyalascus is described from the submarine volcanic crater seamount of Andaman Back-arc Basin, Indian Ocean. The genus was previously known in the Pacific Ocean only.


2017 ◽  
Vol 30 (6) ◽  
pp. 1971-1983 ◽  
Author(s):  
Lu Dong ◽  
Michael J. McPhaden

Abstract Both the Indian and Pacific Oceans exhibit prominent decadal time scale variations in sea surface temperature (SST), linked dynamically via atmospheric and oceanic processes. However, the relationship between SST in these two basins underwent a dramatic transformation beginning around 1985. Prior to that, SST variations associated with the Indian Ocean basin mode (IOB) and the interdecadal Pacific oscillation (IPO) were positively correlated, whereas afterward they were much less clearly synchronized. Evidence is presented from both observations and coupled state-of-the-art climate models that enhanced external forcing, particularly from increased anthropogenic greenhouse gases, was the principal cause of this changed relationship. Using coupled climate model experiments, it is shown that without external forcing, the evolution of the IOB would be strongly forced by variations in the IPO. However, with strong external forcing, the dynamical linkage between the IOB and the IPO weakens so that the negative phase IPO after 2000 is unable to force a negative phase IOB-induced cooling of the Indian Ocean. This changed relationship in the IOB and IPO led to unique SST patterns in the Indo-Pacific region after 2000, which favored exceptionally strong easterly trade winds over the tropical Pacific Ocean and a pronounced global warming hiatus in the first decade of the twenty-first century.


2013 ◽  
Vol 26 (9) ◽  
pp. 2845-2861 ◽  
Author(s):  
Dongliang Yuan ◽  
Hui Zhou ◽  
Xia Zhao

Abstract The authors’ previous dynamical study has suggested a link between the Indian and Pacific Ocean interannual climate variations through the transport variations of the Indonesian Throughflow. In this study, the consistency of this oceanic channel link with observations is investigated using correlation analyses of observed ocean temperature, sea surface height, and surface wind data. The analyses show significant lag correlations between the sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean in fall and those in the eastern Pacific cold tongue in the following summer through fall seasons, suggesting potential predictability of ENSO events beyond the period of 1 yr. The dynamics of this teleconnection seem not through the atmospheric bridge, because the wind anomalies in the far western equatorial Pacific in fall have insignificant correlations with the cold tongue anomalies at time lags beyond one season. Correlation analyses between the sea surface height anomalies (SSHA) in the southeastern tropical Indian Ocean and those over the Indo-Pacific basin suggest eastward propagation of the upwelling anomalies from the Indian Ocean into the equatorial Pacific Ocean through the Indonesian Seas. Correlations in the subsurface temperature in the equatorial vertical section of the Pacific Ocean confirm the propagation. In spite of the limitation of the short time series of observations available, the study seems to suggest that the ocean channel connection between the two basins is important for the evolution and predictability of ENSO.


Sign in / Sign up

Export Citation Format

Share Document