scholarly journals Research on Air Quality Analysis Based on Cluster Methods

2021 ◽  
Vol 898 (1) ◽  
pp. 012024
Author(s):  
Zhaoni Li ◽  
Jian Zheng

Abstract Research on air quality analysis is a hot field. Here we describe an analysis process based on cluster methods for the data of ambient air quality. In this paper, we use the process to cluster on the air quality data which from the National Urban Air Quality Report in December 2020 on the official website of the Ministry of Ecology and Environment of the People’s Republic of China. We find that cities in different clusters with different main pollutants and pollution levels. Ambient air quality analysis aims to provide guidance for reducing the impact of air pollution on health.

2015 ◽  
Vol 10 (3) ◽  
pp. 1022-1028 ◽  
Author(s):  
Sridevi Jena ◽  
Atahar Perwez ◽  
Gurdeep Singh ◽  
Ashok Dubey

The present study was intended to emphasize the assessment of ambient air quality of Dhanbad city with respect to PM10, PM2.5, SO2 and NOX concentrations, in order to investigate the impact of mining and transportation activities. From the monitoring and analysis at four selected monitoring stations during winter and summer seasons, significant spatial variation in pollutant (PM10, PM2.5, SO2 and NOX) concentrations is quite evident. The concentrations of PM10 were observed highest in mining area (at Dhansar PS; 291 µg/m3), whereas the PM2.5 the concentrations were observed higher along traffic routes (especially, at Bank More; 218 µg/m3). Higher concentratios of PM10 in mining area indicates the substantial impact of dust emanated from mining and associated activities on air quality. Whereas, the higher PM2.5 concentration along the transportation routes shows the influence of transportation activities on the airshed of the area. The significant seasonal variation in pollution levels is also apparent, as the concentrations of every pollutant were observed higher during the winter, than the summer season, at all sites. The mean concentration levels of PM10 and PM2.5 were observed 267 µg/m3, 173 µg/m3 and 234 µg/m3, 108 µg/m3 during winter and summer seasons, respectively. From the calculated values of air quality index, it is evident that Dhansar PS and Bank More are most polluted sites and PM10 is the most alarming pollutant in the area under investigation.


2019 ◽  
Vol 19 (17) ◽  
pp. 11303-11314 ◽  
Author(s):  
Tuan V. Vu ◽  
Zongbo Shi ◽  
Jing Cheng ◽  
Qiang Zhang ◽  
Kebin He ◽  
...  

Abstract. A 5-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessment of this action plan is an essential part of the decision-making process to review its efficacy and to develop new policies. Both statistical and chemical transport modelling have been previously applied to assess the efficacy of this action plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we applied a machine-learning-based random forest technique to quantify the effectiveness of Beijing's action plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year-to-year variations in ambient air quality. Further analyses show that the PM2.5 mass concentration would have broken the target of the plan (2017 annual PM2.5<60 µg m−3) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants. However, over the whole period (2013–2017), the primary emission controls required by the action plan have led to significant reductions in PM2.5, PM10, NO2, SO2, and CO from 2013 to 2017 of approximately 34 %, 24 %, 17 %, 68 %, and 33 %, respectively, after meteorological correction. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion. Our results indicate that the action plan has been highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The action plan offers a successful example for developing air quality policies in other regions of China and other developing countries.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Andrew Venter ◽  
Sandra De Vos

Various local and international research has been published on the effects of COVID-19 lockdown on ambient air quality. In most cases, a reduction in ambient NOx and PM concentrations have been observed with varying changes in ambient SO2 levels. Secunda, located in the Highveld Priority Area in Mpumalanga, South Africa is known for its large industrial facilities utilising coal as primary feedstock. The towns of Secunda and eMbalenhle provide the majority of the workforce to Sasol and has therefore been the focus of this study. The ambient air quality in the Secunda region was assessed due to the changes in human behaviour during lockdown, familiarity with the Sasol facility and the strategic locations of ambient air quality stations.Results show a clear decrease in ambient CO, NO2 and PM concentrations, especially during the first two weeks of lockdown. Only subtle changes were observed for ambient H2S and SO2 pollutant concentrations at the ambient monitoring stations. An increasing trend in all ambient species was observed towards the end and post lockdown, in contrast to declining ambient temperatures with the onset of winter. This is also contrary to the reduction in emissions from the factory that conducted annual maintenance in the month following lockdown (phase shutdown). This article concludes that human behaviour has a material local ambient impact on CO, NO2 and PM pollutant species, while H2S concentration profiles are more directly related to the industrial complex’s levels of activity. Ambient SO2 trends did not show a similar correlation with the facility’s activities (as H2S), but a stronger correlation was observed with the diverse local and regional sources in close proximity to Secunda and eMbalenhle. The influence of better dispersion especially on a local scale, brought about by more effective emission heights, is considered material. Moreover, meteorological factors, on local air quality, has been shown to be a material contributor to observed ambient air quality levels in the study domain


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Prince Chidhindi ◽  
Monray D Belelie ◽  
Roelof P Burger ◽  
Gabi Mkhatshwa ◽  
Stuart J Piketh

Coal-fired power plants are considered a major source of criteria air pollutants. The existence of such activities close to densely populated areas has an impact on human health and more generally on the environment. The impact of a pollutant typically depends on its residence time and the existence of background concentration levels. This study evaluates the dispersion of PM2.5, SO2 and NOX emissions from Eskom power plants (Arnot, Hendrina, and Komati) located close to KwaZamokuhle Township. AERMOD was used to assess the contribution of each plant to the air quality of the township. This steady-state dispersion model was used to simulate surface concentrations (1-hour, 24-hour and annual average concentrations) on a 50km domain for 2015-2017. The modelled results together with data obtained from Eskom’s KwaZamokuhle monitoring site were used to estimate the extent to which these power plants contribute to the ambient air quality of KwaZamokuhle Township. The results confirm that the power plants do contribute to concentrations of PM2.5, SO2, and NOx in the ambient air of the township. However, based on a comparison between the modelled and monitored data, it was inferred that power plants are not the only significant source of these criteria pollutants. Evidence from temporal variations in the monitored data shows that domestic burning is likely the major contributor since the variability is more closely associated with burning habits. It is therefore likely that existing regulatory strategies that focus mostly on the industrial sector may not be successful in improving ambient air quality in low-income settlements like KwaZamokuhle.


2014 ◽  
Vol XXXI (61 (3/I/14)) ◽  
pp. 197-215
Author(s):  
Robert Oleniacz ◽  
◽  
Magdalena Kasietczuk ◽  
Mateusz Rzeszutek

2018 ◽  
Vol 247 ◽  
pp. 00002 ◽  
Author(s):  
Anna Gayer ◽  
Łukasz Adamkiewicz ◽  
Dominika Mucha ◽  
Artur Badyda

Many studies have shown associations between exposure to air pollutants and negative health effects such as increased number of Hospital Admissions for respiratory and cardiovascular diseases or even increased daily mortality due to those causes. To assess air quality in ambient air continuous monitoring is run in many cities worldwide. Data which is collected at these points should represent exposure of the population and is used to monitor medium and long-term trends. To provide an information for citizens about the impact of air quality on their health several governmental and municipal agencies developed air quality health indices These tools are based on environmental epidemiology models and on-line air quality data. The health risk is assessed differently for each index. In this paper review of Canadian, American, Hong Kong’s Air Quality Health Index.


Sign in / Sign up

Export Citation Format

Share Document