scholarly journals Thermal Resistance Model of a Flat Plate Solar Air Collector for Energy Efficiency Prediction

2021 ◽  
Vol 945 (1) ◽  
pp. 012005
Author(s):  
K. S. Ong ◽  
K. Gobi ◽  
C. H. Lim ◽  
S. Naghavi ◽  
S. Baljit

Abstract The temperature of a PV panel rises during operation which affects its power output. A PV panel is similar to a flat plate solar collector. This paper presents a simple theoretical heat transfer resistance model and a solution procedure to predict the absorber plate surface temperature of the solar collector. The model consisted of a rectangular cross-section steel duct placed inclined at an angle to the horizontal and exposed to solar radiation. The heat absorbed on the top surface of the plate is transmitted by conduction through the plate and heats the air in the duct. This creates a natural buoyancy effect which induces a natural convection air flow rate. A simple one-dimensional theoretical model of the solar collector with the thermal resistances of the various components is proposed. Simulated results of plate temperature and induced air flow velocity are presented.

2019 ◽  
Vol 15 (1) ◽  
pp. 35-45
Author(s):  
Saad Najeeb Shehab

    In this work, an experimental study has been done to expect the heat characteristics and performance of the forced-convection from a heated horizontal rectangular fins array to air inside a rectangular cross-section duct. Three several configurations of rectangular fins array have been employed. One configuration without notches and perforations (solid) and two configurations with combination of rectangular-notches and circular-perforations for two various area removal percentages from fins namely 18% notches-9% perforations and 9% notches-18% perforations are utilized.  The rectangular fins dimensions and fins number are kept constant. The fins array is heated electrically from the base plate with five different magnitudes of power-inputs. Five several air flow velocity into a duct are utilized. The influence of fin geometry, air flow velocity, Reynolds number and the surface heat flux on the heat-performance of forced heat convection have been simulated and studied experimentally. The experimental data indicates that the combination of 18% rectangular-notched and 9% circular-perforated rectangular fins array gave best forced heat performance in terms of average heat transfer coefficient about (25% - 45%) and (7% - 20%) compared than solid and 9% notches with18% perforations fins array respectively. Five empirical correlations to predict the average Nusselt number for the 18% notches with 9% perforations rectangular fins array at wide range of surface heat flux are deduced. The present data are compared with previous works and a good closeness in behavior is noticed.


Author(s):  
Ahmad Fudholi ◽  
Mariyam Fazleena Musthafa ◽  
Abrar Ridwan ◽  
Rado Yendra ◽  
Ari Pani Desvina ◽  
...  

<span lang="EN-US">Photovoltaic thermal (PVT) collectors convert solar radiation directly to both electrical and thermal energies. A PVT collector basiccaly combines the functions of a flat plate solar collector and those of a PV panel. This review presents thermodinamics fundamentals, descriptions, and previous works conducted on energy and exergy analysis of air based PVT collector. Studies in 2010 to 2018 of the energy and exergy analysis of air based PVT collectors are summarized. The energy and exergy efficiency of air based PVT collector ranges from 31% to 94% and 8.7% to 18%, respectively. In addition, flat plate solar collector is presented. Studies conducted on air based PVT collectors are reviewed.</span>


1981 ◽  
Vol 103 (2) ◽  
pp. 153-157 ◽  
Author(s):  
L. A. Diaz ◽  
N. V. Suryanarayana

A flat plate solar collector is modelled as a rectangular channel of high width to gap ratio with air entering the collector with a fully developed turbulent velocity profile. One plate of the collector is subjected to a uniform heat flux with the other plate heavily insulated. Experimental values of friction factor and heated plate temperature in the thermal entrance region are presented and compared with analytical predictions. It is shown that there will be significant plate temperature variation in the thermal entrance region particularly at low flow rates. It is also shown that neglecting conduction effects in the absorber plate will not lead to any significant errors in estimating absorber plate temperature variation. Tabulated values of dimensionless plate temperature for different values of the dimensionless distance from the leading edge for several Reynolds number are presented.


2017 ◽  
Vol 374 ◽  
pp. 121-130 ◽  
Author(s):  
T.S. Ravikumar ◽  
Sivamani Seralathan ◽  
Venkatesan Hariram ◽  
Hemanth Kumar Guntamadugu

In this present study, periodically positioned triangular shaped ribs having a round top corner at the bottom with groove positioned on the top side of the plate is analyzed at laminar flow conditions. The numerical results obtained for the heated plate with rib-groove geometry are compared with that of the flat plate kept under similar conditions. At lower air flow velocity, the Nusselt number of the flat plate improved from 400 to 1407 with the provision of triangular ribs-groove arrangement in it. Similarly, it improved from 850 to 6420 at higher air flow velocity with triangular ribs-groove arrangement. Higher Nusselt number values leads to a higher heat transfer coefficient values. Therefore, the triangular ribs-groove geometry gives an enhanced rate of heat transfer with minimum pressure drop. The study shows that irrespective of geometry, the rate of heat transfer is relying on fluid (air in this present case) flow velocity over heated plate, fluid flow contact with the heated plate and surface area of the heated plate.


Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


Sign in / Sign up

Export Citation Format

Share Document