scholarly journals The Performance of Taper Helical Pile Embedded in Loose Sand Under Uplift Static and Cyclic Load Using 3D-Finite Element Analysis

2022 ◽  
Vol 961 (1) ◽  
pp. 012033
Author(s):  
Ahmed S. Ali ◽  
Nahla M. Salim ◽  
Husam H. Baqir

Abstract Piles with helices are a kind of foundation that is capable of withstanding compression, tension, and lateral loads. However, for almost 25 years, this kind of Pile was widely used across the world. Its behaviour is unpredictable and terrifying, especially in Iraq. The present study analysed this kind of Pile using the finite element method. It was recommended that the helical pile geometry be modeled by numerical model technique and the computer program Plaxis 3D. The plaxis 3D software is a well-known geotechnical engineering tool that numerically analyses soil and simulates experimental work in terms of curve matching and outcomes. Furthermore, an analysis of variables was conducted. The primary variable research investigates the influence of the number of helices and the tapered helix distance under static and cyclic load. The final finding is that the more helices in a pile, the smaller the displacement (or amplitude) in comparison to one helix under the effect of uplift static and cyclic load. As a result that the effect of helix number on soil behaviour is more than the effect of changing the distances between helix.

2021 ◽  
Vol 318 ◽  
pp. 01018
Author(s):  
Ahmed. S. Ali ◽  
Nahla. M. Salim ◽  
Husam. H. Baqir

Helical piles are foundation systems used to support compression, tension, and lateral loads. However, this type of piles was used around the world for more than 25 years. Its behavior, especially in Iraq, is still unknown and scare. The present study is carried out by analyses of this type of pile using the finite element method. Modeling of the helical pile geometry has been proposed using the finite element through the computer program Plaxis 3D. Parametric analyses were also performed. The main parametric study is the effect of a number of the helix, spacing between helix, the helix diameter, and helix configuration. The main conclusion is that as the number of helix increases, the bearing capacity increases further more than the higher the distance between helix, the higher bearing capacity. Maximum pile capacity with the case of three-helix increased by 115.4 %compared to the case without helix. Pile capacity with the case of spacing 3.5 D reached 130.7 % compared to the case of spacing 0.5 D. The value of displacement decreased with increasing spacing between the helices, while the value of displacement increased with the decrease in the spacing between the helices for top, middle, and bottom helix.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1689-1694 ◽  
Author(s):  
PENG YAN ◽  
CHIPING JIANG

This work deals with modeling of 1-3 thermoelectroelastic composites with a doubly periodic array of piezoelectric fibers under arbitrary combination of mechanical, electrical loads and a uniform temperature field. The finite element method (FEM) based on a unit cell model is extended to take into account the thermoelectroelastic effect. The FE predictions of effective properties for several typical periodic microstructures are presented, and their influences on effective properties are discussed. A comparison with the Mori-Tanaka method is made to estimate the application scope of micromechanics. The study is useful for the design and assessment of composites.


Author(s):  
Nikhil Joshi ◽  
Pritha Ghosh ◽  
Jonathan Brewer ◽  
Lawrence Matta

Abstract API RP 1102 provides a method to calculate stresses in buried pipelines due to surface loads resulting from the encroachment of roads and railroads. The API RP 1102 approach is commonly used in the industry, and widely available software allows for quick and easy implementation. However, the approach has several limitations on when it can be used, one of which is that it is limited to pipelines crossing as near to 90° (perpendicular crossing) as practicable. In no case can the crossing be less than 30° . In this paper, the stresses in the buried pipeline under standard highway vehicular loading calculated using the API RP 1102 method are compared with the results of two other methods; an analytical method that accounts for longitudinal and circumferential through wall bending effects, and the finite element method. The benefit of the alternate analytical method is that it is not subject to the limitations of API RP 1102 on crossing alignment or depth. However, this method is still subject to the limitation that the pipeline is straight and at a uniform depth. The fact that it is analytical in nature allows for rapid assessment of a number of pipes and load configurations. The finite element analysis using a 3D soil box approach offers the greatest flexibility in that pipes with bends or appurtenances can be assessed. However, this approach is time consuming and difficult to apply to multiple loading scenarios. Pipeline crossings between 0° (parallel) and 90° (perpendicular) are evaluated in the assessment reported here, even though these are beyond the scope of API RP 1102. A comparison across the three methods will provide a means to evaluate the level of conservatism, if any, in the API RP 1102 calculation for crossing between 30° and 90° . It also provides a rationale to evaluate whether the API RP 1102 calculation can potentially be extended for 0° (parallel) crossings.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Roman Kvasov ◽  
Lev Steinberg

This paper presents the numerical study of Cosserat elastic plate deformation based on the parametric theory of Cosserat plates, recently developed by the authors. The numerical results are obtained using the Finite Element Method used to solve the parametric system of 9 kinematic equations. We discuss the existence and uniqueness of the weak solution and the convergence of the proposed FEM. The Finite Element analysis of clamped Cosserat plates of different shapes under different loads is provided. We present the numerical validation of the proposed FEM by estimating the order of convergence, when comparing the main kinematic variables with an analytical solution. We also consider the numerical analysis of plates with circular holes. We show that the stress concentration factor around the hole is less than the classical value, and smaller holes exhibit less stress concentration as would be expected on the basis of the classical elasticity.


2013 ◽  
Vol 831 ◽  
pp. 137-140
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Rui Li ◽  
Keun Yeong Oh ◽  
Young Soo Chun

Coupling beams resist lateral loads efficiently is well known in coupled wall systems. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Coupling beams with small depth-to-span ratio shall be reinforced with two intersecting groups of diagonally placed bars symmetrical along the mid-span. It's always hard to optimize construction projects. This paper used the finite element software (Abaqus) to analysis and simulate the nonlinear behavior of a new reinforcement called head bar and compared the results to the current standards.


Sign in / Sign up

Export Citation Format

Share Document