scholarly journals Spatiotemporal Evaluation of Eutrophication State in The Hammar Marsh Using A Satellite-Based Model

2022 ◽  
Vol 961 (1) ◽  
pp. 012064
Author(s):  
Bayda A Dhaidan ◽  
Imzahim A Alwan ◽  
Mahmoud S Al-Khafaji

Abstract Water pollution is now a major threat to the existence of living beings. Accordingly, Water quality monitoring is an important activity toward restoring water quality. As wetland eutrophication is one of the essential ecosystem elements, devastation of this element is a significant issue. The Trophic State Index (TSI) provides information about trophic condition of water bodies. This paper aims to conduct spatiotemporal monitoring for the eutrophication of the west part of Al-Hammar Marsh for the period 2013-2020. To this end, a satellite-based TSI computation model was developed and implemented by using a series of OLI Landsat satellite images. The results showed that there was no improvement in the eutrophication state in the marsh, the percentage of the low class of TSI decreased in 2015 and 2018 to 7.9% and 2.6% and increased in 2017 and 2020 to 39.8%, and 56.3%. In general, the TSI was in the poor class in all the considered periods. Fluctuation of quantity and quality of the inflow prevents restoring the eutrophication of the marsh because this process requires stability in the levels of inundation above the critical limits for the water depth and periods. Therefore, it is necessary to find suitable alternatives to provide water drainage in quantities and quality that ensure the sustainability of the marsh ecosystem.

2017 ◽  
Vol 37 (1) ◽  
pp. 09
Author(s):  
Maria Magaly Heidenreich Silva Bucci ◽  
Luiz Fernando Cappa de Oliveira

Dr. João Penido dam is the main reservoir for water supply of Juiz de Fora (MG). The forms of land use and occupation have produced negative impacts on the aquatic ecosystem. The general objective of this study was to assess the anthropogenic impact on water quality of the watershed. To this was done to characterize the quality of its waters and the parameters measured were compared with CONAMA Resolution 357/2005. It was also calculated the Water Quality Index (WQI) and the Trophic State Index (TSI). The monitoring tool has proved essential in actions involving preservation of the watershed.


Author(s):  
Alberto Quevedo-Castro ◽  
Jesús L. López ◽  
Jesus Gabriel Rangel-Peraza ◽  
Erick Bandala ◽  
Yaneth Bustos-Terrones

A study of the water quality of the Adolfo López Mateos Reservoir (ALMD) was developed through different indicators from a spatial and seasonal perspective. Variables related to the general characteristics of water quality, trophic level and ecological risk were assessed through the water Quality Index (WQINSF-BROWN), Trophic State Index (TSICARLSON) and the Ecological Risk Index (RIHAKANSON). Using data from physical, chemical and biological parameters obtained from four sampling points in the ALMD, the water quality was assessed in each model used. The results indicated that the reservoir presents a water quality classified as “medium” (WQINSF-BROWN = 70), where significant variations in the concentrations of some parameters are observed. The reservoir showed a general trophic state classified as “Mesotrophic” (TSIGENERAL-AVERAGE = 43.04). The ecological risk analysis achieved the best classification of the methodology, discarding contamination by heavy metals in surface waters. Through this type of applied methodologies will help as decision making tools in the dam, as well as for application in other dams in the region.


2013 ◽  
Vol 24 (3) ◽  
pp. 314-325 ◽  
Author(s):  
Adriane Marques Pimenta ◽  
Leonardo Marques Furlanetto ◽  
Edélti Faria Albertoni ◽  
Cleber Palma-Silva

AIM: This study characterized the water quality of the lotic areas of the Rio das Antas (Antas River)influenced by the construction of the Monte Claro hydroelectric plant (South Brazil), a run-of-the-river reservoir. METHODS: To assess the water quality, we selected four sampling points based on the results obtained in the water-quality monitoring program performed by CERAN (the Rio das Antas Energetic Company) in the pre-filling (2002-2004) and post-filling (2005-2008) periods. The river flow was monitored during both of the periods. Seasonal samplings were conducted, and alkalinity, chlorophyll a, total and fecal coliforms, conductivity, color, BOD, COD, total phosphorus, nitrate, nitrite, ammoniacal nitrogen, dissolved oxygen, pH, total dissolved solids, suspended solids, sulfates, temperature and turbidity were evaluated. The results were interpreted according to the Brazilian Environmental Council's Water Quality Index, Trophic State Index and CONAMA Resolution 357/05. To verify the occurrence of alterations before and after the plant operation, t-tests were performed. RESULTS: Significant changes in water quality were not observed after the impoundment. The permanence of the characteristics of the natural hydrography was important for maintaining the water quality. The decline of the water quality in a stretch with reduced flow was caused by Burati stream, a tributary containing high concentrations of nutrients and fecal coliforms. CONCLUSIONS:The Monte Claro hydroelectric plant did not alter the water quality of the Antas River. The small reservoir resulting from the plant project favors the maintenance of the water quality of the river and does not favor eutrophication. Attention should be given to Burati stream, a tributary of the Antas River, regarding its high nutrient and coliform content.


Author(s):  
Amanda Oliveira Souza ◽  
Clayton Moura de Carvalho ◽  
Raimundo Rodrigues Gomes Filho ◽  
Carlos Alexandre Borges Garcia ◽  
Elder Sanzio Aguiar Cerqueira ◽  
...  

Irrigation makes food production viable, but the quality and quantity of water may be compromised as a result of inadequate management, which may lead to an increase in the concentration of nutrients, heavy metals and agrochemicals. This study aimed to characterize and monitor the water quality of the Continguiba/Pindoba Irrigated Perimeter in Sergipe, Brazil. Secondary data from the Water Quality Monitoring Program were used through the reports of monitoring campaigns carried out between 2013 and 2014. The Water Quality Index (WQI) and the Trophic State Index (TSI) were used in the water quality assessment. The results showed that there is an influence of seasonality, where the best indices were obtained in the rainy season, with the WQI characterized as regular to good, and the TSI characterized as oligotrophic. There was interference from the drainage of rice lots in the dry season, contributing to the increase of nutrients. There was no spatial influence for WQI, which may be related to the eclipse effect, which attenuated the negative impact of a certain variable given the aggregation of several variables. The TSI suffered spatial influence, the waters added to agricultural and fish lots were classified as oligotrophic or ultraoligotrophic, already in the drainage were found indexes of super-utrophic state.


Environments ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 7 ◽  
Author(s):  
Alberto Quevedo-Castro ◽  
Jesús Lopez ◽  
Jesús Rangel-Peraza ◽  
Erick Bandala ◽  
Yaneth Bustos-Terrones

A study of the water quality of the Adolfo López Mateos Reservoir (ALMD) was developed through different indicators from a spatial and seasonal perspective. Variables related to the general characteristics of water quality, trophic level, and ecological risk were assessed through the National Sanitation Foundation–Brown Water Quality Index (WQINSF–BROWN), the Carlson Trophic State Index (TSICARLSON) and the Håkanson Ecological Risk Index (RIHÅKANSON). Using data from physical, chemical, and biological parameters obtained from four sampling points in the ALMD, the water quality was assessed in each model used. The results indicated that the reservoir presents a water quality classified as “medium” (WQINSF–BROWN = 70), where significant variations in the concentrations of some parameters are observed. The reservoir showed a general trophic state (TSIGENERAL-AVERAGE = 43.04) classified as “mesotrophic”. The ecological risk analysis achieved the best classification of the methodology, discarding contamination by heavy metals in surface waters. This type of applied methodology will help in decision-making tools in the dam, and can be applied in other dams in the region.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2117
Author(s):  
Su-mi Kim ◽  
Hyun-su Kim

The variations in water quality parameters and trophic status of a multipurpose reservoir in response to changing intensity of monsoon rain was investigated by applying a trophic state index deviation (TSID) analysis and an empirical regression model to the data collected in two periods from 2014 to 2017. The reservoir in general maintained mesotrophic conditions, and Carlson’s trophic state index (TSIc) was affected most by TSITP. Nutrient concentrations, particularly phosphorus, did not show strong correlations with precipitation, particularly in the period with weak monsoon, and a significant increase in total phosphorus (TP) was observed in Spring 2015, indicating the possibility of internal phosphorus loading under decreased depth and stability of water body due to a lack of precipitation. TSIChl was higher than TSISD in most data in period 1 when a negligible increase in precipitation was observed in the monsoon season while a significant fraction in period 2 showed the opposite trend. Phytoplankton growth was not limited by nutrient limitation although nutrient ratios (N/P) of most samples were significantly higher than 20, indicating phosphorus-limited condition. TSID and regression analysis indicated that phytoplankton growth was limited by zooplankton grazing in the Spring, and that cell concentrations and community structure in the monsoon and post-monsoon season were controlled by the changing intensity of the monsoon, as evidenced by the positive and negative relationships between community size and cyanobacterial population with the amount of precipitation in the Summer, respectively. The possibility of contribution from internal loading and an increase in cyanobacterial population associated with weak monsoon, in addition to potential for nutrient enrichment in the post-monsoon season, implies a need for the application of more stringent water quality management in the reservoir that can handle all potential scenarios of eutrophication.


Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


2017 ◽  
Vol 29 (0) ◽  
Author(s):  
Rafela Neves Marreto ◽  
Maria da Graça Zepka Baumgarten ◽  
Mônica Wallner-Kersanach

Abstract: Aim This study aimed to evaluate the Trophic State Index (TSI) at the margin and in the channel of the Patos Lagoon estuary, considering different hydrological conditions. Methods Surface and bottom water samples were collected in three sites in the channel (margin and center) and in two sites at the Saco da Mangueira in different hydrological conditions in 2011. Results Waters at the Saco da Mangueira are very contaminated by phosphate and nitrogenous compounds. The TSI classifies these waters as being hypereutrophic, the consequence of both the release of effluents which were poorly treated and the low water flow in the inlet. Contamination was mild at the margins of the channel, where waters were classified as being eutrophic and mesotrophic. Trophic balance (mesotrophic waters - oligotrophic surface - bottom) was found in the center of the channel as a consequence of strong water flow and dilution of contaminants coming from the margins. Conclusions Spatial variation in the TSI value enabled clear distinction to be observed between the areas at the margins and in the channel, because it reflected the punctual presence of anthropogenic input in the marginal waters, mainly in the Saco da Mangueira. Effluent treatment must be required in order to control severe trophic imbalance in the waters at the margins of the city. Variations of the proposed index are a useful tool to identify sources of phosphate compounds in other aquatic environments.


2016 ◽  
Vol 9 (2) ◽  
pp. 146-157
Author(s):  
Adimasu Woldesenbet Worako

Lake Hawassa is one of the Major Ethiopian Rift Valley Lakes which is situated in southern regional state, which has a closed basin system and receives water from only Tikurwuha River and runoff from the catchment. Quality of the lake water is vital for the surrounding community for proper and safe use of the lake. The present study was designed to examine the physicochemical and biological water quality suitability for multiple purposes and to determine trophic state index of the lake for a period of three months from December to February, 2011/12. Water samples were collected from the lake on monthly basis and analyzed for all water quality parameters by using standard methods. Data analysis was performed by descriptive, multivariate analysis (MANOVA%


Sign in / Sign up

Export Citation Format

Share Document