scholarly journals Catalytic co-pyrolysis palm oil empty fruit bunch and low-density polyethylene of plastic waste into high grade bio-oil

2021 ◽  
Vol 1053 (1) ◽  
pp. 012101
Author(s):  
Sunarno ◽  
Zultiniar ◽  
A H Santoso ◽  
P S Utama
2021 ◽  
pp. 103282
Author(s):  
Mohammed Abobakr Al-Maari ◽  
Mohd Azmier Ahmad ◽  
Azam Taufik Mohd Din ◽  
Hamizura Hassan ◽  
Ahmed Mubarak Alsobaai

2018 ◽  
Vol 154 ◽  
pp. 01036 ◽  
Author(s):  
Bachrun Sutrisno ◽  
Arif Hidayat

The palm oil industry is currently growing rapidly and generating large amounts of biomass waste that is not utilized properly. Palm empty fruit bunch (PEFB), by product of palm oil industry is considered as a promising alternative and renewable energy source that can be converted to a liquid product by pyrolysis process. In this work, pyrolysis of PEFB was studied to produce bio-oil. Pyrolysis experiments were carried out in a bench scale tubular furnace reactor. The effects of pyrolysis temperatures (400–600 °C) at heating rate of 10 °C/min to optimize the pyrolysis process for maximum liquid yield were investigated. The characteristics of bio-oil were analyzed using FTIR and GC–MS. The results showed that the maximum bio-oil yield was 44.5 wt. % of the product at 450 °C. The bio-oil products were mainly composed of acids, aldehydes, ketones, alcohols, phenols, and oligomers. The chemical characterization showed that the bio-oil obtained from PEFB may be potentially valuable as a fuel and chemical feedstock.


2018 ◽  
Vol 195 ◽  
pp. 01022 ◽  
Author(s):  
Muh. Yamin ◽  
Rudito ◽  
Andi Lisnawati ◽  
Mohammad Lutfi

The accumulation of rice husks (RH), oil palm empty fruit bunch (OPEFB), and plastic waste (PW) can reduce the fertility of the soil. The objective of this study was to compare the quality of the low density particle boards using that waste. Experimental design was used by testing the quality of particle boards with a substitution of 50 % by weight of the total mixes for each waste (RH and OPEFB) and 50% of PW with 3 replications. The results revealed that the quality of the low density particle boards based on water content, density, and modulus of rupture (MOR) tests meet the requirements of SNI 03-2105-2006, whereas the modulus of elasticity (MOE), thickness swelling, water absorption, and the tension perpendicular to surface tests do not comply to the requirements. This preliminary study revealed that the quality of particle boards using OPEFB was better than the particle boards using RH for building materials such as ceilings.


Sign in / Sign up

Export Citation Format

Share Document