scholarly journals Laboratory Study of Residual Oil Mobilization by Induce Vibration in Porous Media

2021 ◽  
Vol 1145 (1) ◽  
pp. 012052
Author(s):  
Ali Nooruldeen Abdulkareem ◽  
Mudhfer Yacoub Hussien ◽  
Hanoon H. Mashkoor
2021 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Abstract Our previous research, honoring interfacial properties, revealed that the wettability state is predominantly caused by phase change—transforming liquid phase to steam phase—with the potential to affect the recovery performance of heavy-oil. Mainly, the system was able to maintain its water-wetness in the liquid (hot-water) phase but attained a completely and irrevocably oil-wet state after the steam injection process. Although a more favorable water-wetness was presented at the hot-water condition, the heavy-oil recovery process was challenging due to the mobility contrast between heavy-oil and water. Correspondingly, we substantiated that the use of thermally stable chemicals, including alkalis, ionic liquids, solvents, and nanofluids, could propitiously restore the irreversible wettability. Phase distribution/residual oil behavior in porous media through micromodel study is essential to validate the effect of wettability on heavy-oil recovery. Two types of heavy-oils (450 cP and 111,600 cP at 25oC) were used in glass bead micromodels at steam temperatures up to 200oC. Initially, the glass bead micromodels were saturated with synthesized formation water and then displaced by heavy-oils. This process was done to exemplify the original fluid saturation in the reservoirs. In investigating the phase change effect on residual oil saturation in porous media, hot-water was injected continuously into the micromodel (3 pore volumes injected or PVI). The process was then followed by steam injection generated by escalating the temperature to steam temperature and maintaining a pressure lower than saturation pressure. Subsequently, the previously selected chemical additives were injected into the micromodel as a tertiary recovery application to further evaluate their performance in improving the wettability, residual oil, and heavy-oil recovery at both hot-water and steam conditions. We observed that phase change—in addition to the capillary forces—was substantial in affecting both the phase distribution/residual oil in the porous media and wettability state. A more oil-wet state was evidenced in the steam case rather than in the liquid (hot-water) case. Despite the conditions, auspicious wettability alteration was achievable with thermally stable surfactants, nanofluids, water-soluble solvent (DME), and switchable-hydrophilicity tertiary amines (SHTA)—improving the capillary number. The residual oil in the porous media yielded after injections could be favorably improved post-chemicals injection; for example, in the case of DME. This favorable improvement was also confirmed by the contact angle and surface tension measurements in the heavy-oil/quartz/steam system. Additionally, more than 80% of the remaining oil was recovered after adding this chemical to steam. Analyses of wettability alteration and phase distribution/residual oil in the porous media through micromodel visualization on thermal applications present valuable perspectives in the phase entrapment mechanism and the performance of heavy-oil recovery. This research also provides evidence and validations for tertiary recovery beneficial to mature fields under steam applications.


2011 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Muhammad Taufiq Fathaddin ◽  
Asri Nugrahanti ◽  
Putri Nurizatulshira Buang ◽  
Khaled Abdalla Elraies

In this paper, simulation study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil and microemulsion saturation. The generated porosity fields were applied into UTCHEM for simulating surfactant-polymer flooding in heterogeneous two-layered porous media. From the analysis, surfactant-polymer flooding was more sensitive than water flooding to the spatial distribution of multiple porosity fields. Residual oil saturation in upper and lower layers after water and polymer flooding was about the same with the reservoir heterogeneity. On the other hand, residual oil saturation in the two layers after surfactant-polymer flooding became more unequal as surfactant concentration increased. Surfactant-polymer flooding had higher oil recovery than water and polymer flooding within the range studied. The variation of oil recovery due to the reservoir heterogeneity was under 9.2%.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 664 ◽  
Author(s):  
Jorge Avendaño ◽  
Nicolle Lima ◽  
Antonio Quevedo ◽  
Marcio Carvalho

Wettability has a dramatic impact on fluid displacement in porous media. The pore level physics of one liquid being displaced by another is a strong function of the wetting characteristics of the channel walls. However, the quantification of the effect is still not clear. Conflicting data have shown that in some oil displacement experiments in rocks, the volume of trapped oil falls as the porous media becomes less water-wet, while in some microfluidic experiments the volume of residual oil is higher in oil-wet media. The reasons for this discrepancy are not fully understood. In this study, we analyzed oil displacement by water injection in two microfluidic porous media with different wettability characteristics that had capillaries with constrictions. The resulting oil ganglia size distribution at the end of water injection was quantified by image processing. The results show that in the oil-wet porous media, the displacement front was more uniform and the final volume of remaining oil was smaller, with a much smaller number of large oil ganglia and a larger number of small oil ganglia, when compared to the water-wet media.


1995 ◽  
Vol 3 (01) ◽  
pp. 103-112 ◽  
Author(s):  
Daniel Broseta ◽  
Fatiha Medjahed ◽  
Jacqueline Lecourtier ◽  
Michel Robin

2007 ◽  
Author(s):  
Alexandre S.L. Vaz ◽  
Pavel G. Bedrikovetsky ◽  
Antonio Luiz Serra de Souza ◽  
Claudio Jose Alves Furtado

SPE Journal ◽  
2009 ◽  
Vol 14 (02) ◽  
pp. 237-244 ◽  
Author(s):  
Pingping Shen ◽  
Jialu Wang ◽  
Shiyi Yuan ◽  
Taixian Zhong ◽  
Xu Jia

Summary The fluid-flow mechanism of enhanced oil recovery (EOR) in porous media by alkali/surfactant/polymer (ASP) flooding is investigated by measuring the production performance, pressure, and saturation distributions through the installed differential-pressure transducers and saturation-measurement probes in a physical model of a vertical heterogeneous reservoir. The fluid-flow variation in the reservoir is one of the main mechanisms of EOR of ASP flooding, and the nonlinear coupling and interaction between pressure and saturation fields results in the fluid-flow variation in the reservoir. In the vertical heterogeneous reservoir, the ASP agents flow initially in the high-permeability layer. Later, the flow direction changes toward the low- and middle-permeability layers because the resistance in the high-permeability layer increases on physical and chemical reactions such as adsorption, retention, and emulsion. ASP flooding displaces not only the residual oil in the high-permeability layer but also the remaining oil in the low- and middle-permeability layers by increasing both swept volume and displacement efficiency. Introduction Currently, most oil fields in China are in the later production period and the water cut increases rapidly, even to more than 80%. Waterflooding no longer meets the demands of oilfield production. Thus, it is inevitable that a new technology will replace waterflooding. The new technique of ASP flooding has been developed on the basis of alkali-, surfactant-, and polymer-flooding research in the late 1980s. ASP flooding uses the benefits of the three flooding methods simultaneously, and oil recovery is greatly enhanced by decreasing interfacial tension (IFT), increasing the capillary number, enhancing microscopic displacing efficiency, improving the mobility ratio, and increasing macroscopic sweeping efficiency (Shen and Yu 2002; Wang et al. 2000; Wang et al. 2002; Sui et al. 2000). Recently, much intensive research has been done on ASP flooding both in China and worldwide, achieving some important accomplishments that lay a solid foundation for the extension of this technique to practical application in oil fields (Baviere et al. 1995; Thomas 2005; Yang et al. 2003; Li et al. 2003). In previous work, the ASP-flooding mechanism was studied visually by using a microscopic-scale model and double-pane glass models with sand (Liu et al. 2003; Zhang 1991). In these experiments, the water-viscosity finger, the residual-oil distribution after waterflooding, and the oil bank formed by microscopic emulsion flooding were observed. In Tong et al. (1998) and Guo (1990), deformation, threading, emulsion (oil/water), and strapping were observed as the main mechanisms of ASP flooding in a water-wetting reservoir, while the interface-producing emulsion (oil/water), bridging between inner pore and outer pore, is the main mechanism of ASP flooding in an oil-wetting reservoir. For a vertical heterogeneous reservoir, ASP flooding increases displacement efficiency by displacing residual oil through decreased IFT, simultaneously improving sweep efficiency by extending the swept area in both vertical and horizontal directions. Some physical and chemical phenomena, such as emulsion, scale deposition, and chromatographic separation, occur during ASP flooding (Arihara et al. 1999; Guo 1999). Because ASP flooding in porous media involves many complicated physicochemical properties, many oil-recovery mechanisms still need to be investigated. Most research has been performed on the microscopic displacement mechanism of ASP flooding, while the fluid-flow mechanism in porous media at the macroscopic scale lacks sufficient study. In this paper, a vertical-heterogeneous-reservoir model is established, and differential-pressure transducers and saturation-measuring probes are installed. The fluid-flow mechanism of increasing both macroscopic sweep efficiency and microscopic displacement efficiency is studied by measuring the production performance and the variation of pressure and saturation distributions in the ASP-flooding experiment. An experimental database of ASP flooding also is set up and provides an experimental base for numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document