scholarly journals Modern trends in the development of electrical discharge machining

2021 ◽  
Vol 1199 (1) ◽  
pp. 012043
Author(s):  
P Kuchta ◽  
Ľ Straka ◽  
J Zajac ◽  
S Radchenko

Abstract The current time is characterized by the rapid development of modern production methods. These modern production methods are in many cases closely linked to progressive production methods, including EDM. The required high productivity and product quality is the reason for using such production methods. In addition to flawless production processes and highly sophisticated production equipment, these requirements can only be met using high-quality production tools. This paper, therefore, aims to describe the results of the analysis of current approaches in the field of modern trends in the development of electrical discharge machining, closely focusing on the development of control systems for generating electrical impulses in connection with the development of advanced tool electrodes. The performed analysis is also supplemented by the definition of mutual relations between selected properties of wire tool electrodes, their cutting power, and the achieved quality of the machined surface after electrical discharge machining. This should significantly help in increasing the quality level of the machined surface during wire electrical discharge machining and at the same time higher productivity of the electroerosive process. This will make this technology more competitive compared to other advanced technologies.

2013 ◽  
Vol 856 ◽  
pp. 226-230 ◽  
Author(s):  
Hamidullah Yaşar ◽  
Bülent Ekmekci

The role of suspended particles on Ti-6Al-4V surface in Powder Mixed Electrical Discharge Machining (PMEDM) is studied using SiC powder mixing in water dielectric liquid. Surface modifications due to the additives in dielectric liquid are investigated by means of optical, scanning electron microscopy and energy dispersive spectroscopy. The attachment of added powders and surface topographies interrelated with powder suspension concentration, particle size and electrical parameters such as pulse on duration and current. The influence on discharge transitivity with respect to SiC additives is noticed with pock like features on the surface. The geometry and size of these features indicated a robust dependency with respect to operational parameters and indicated the role of secondary discharges during PMEDM. SiC particles severely transferred from di-electric liquid to machined surface at critical operational parameters and implied that the process could be also used as a surface alloying technique.


Author(s):  
P. C. Tan ◽  
S. H. Yeo

The thickness of recast layers produced during electrical discharge machining (EDM) is an important process performance measure as it may indicate an extent of crack propagation in a machined surface or thickness of a functional layer alloyed onto a machined surface. Thus, the availability of the recast layer thickness prediction models is needed to allow better control of machining outcomes, which becomes more vital for micro-EDM due to the microscale of machined features. The proposed numerical model, based on a multiple discharge approach for recast layer prediction, is developed to fill an existing gap in micro-EDM. The multiple discharge approach accounts for the overlapping nature by which craters are generated on the machined surface and considers the recast layer to be a combination of individual recast regions from individual craters. The numerical analysis, based on finite element methods, is used to determine the melting isotherms due to heat inputs on overlapping crater profiles. Then, a hemispherical-capped crater profile is estimated by applying a recast plasma flushing efficiency to the amount of molten material bounded by the melting isotherm. Finally, the recast region is defined to be bounded by the melting isotherm and crater profile. The model, developed for a peak discharge current of 1.45 A and pulse on time between 166 ns and 606 ns, predicted recast layer thicknesses of between 1.0 μm and 1.82 μm. It is then validated at pulse on time settings of 244 ns and 458 ns, which generated average recast layer thicknesses of 1.18 μm and 1.56 μm, respectively. Thus, the numerical model developed using the multiple discharge approach is suitable for estimation of recast layer thicknesses in micro-EDM.


2011 ◽  
Vol 480-481 ◽  
pp. 300-305
Author(s):  
Jiang Wen Liu ◽  
T.M. Yue ◽  
Zhong Ning Guo ◽  
Z. Y. Wan ◽  
G.Y. Liu

A new concavo-convex electrode has been designed and employed. And an analysis of the electrical discharge machining (EDM) mechanism of a particulate reinforced metal matrix composite with this new electrode was conducted in this study. It was found that EDM with this new electrode can accelerate the debris discharge during machining so that it has a higher MRR compared to the case where a normal electrode was employed. Moreover, by studying the surface craters, it could confirm that discharge craters tend to connect together for the normal electrode. This indicates an abnormal arcing condition. Thus, the wire electrode was easy to be broken. While for the new electrode, separated craters were observed on the machined surface. This means a stable processing condition. The experiment results reveal the processing mechanism of EDM electrical discharge machining of MMCs by employing this new electrode.


2009 ◽  
Vol 620-622 ◽  
pp. 711-714 ◽  
Author(s):  
Li Li ◽  
Guang Ming Yuan ◽  
Zong Wei Niu ◽  
Rong Guo Hou

Sintered NdFeB permanent magnet is widely used in many areas because of its excellent magnet property. In this study, the machining parameters of electrical discharge machining (EDM) are varied to study the effects of electrical discharge energy on material removal rate and surface roughness of NdFeB magnet. Moreover, the micro-cracks on the machined surface induced by EDM are also examined. The experimental results reveal that the MRR increases with the electrical discharge energy. The number of surface cracks on the machined surface increases with the enhancement of discharge energy Thus, using EDM process to machine sintered NdFeB magnet depends on setting the machining parameters to prevent surface crack.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5943
Author(s):  
Arminder Singh Walia ◽  
Vineet Srivastava ◽  
Mayank Garg ◽  
Nalin Somani ◽  
Nitin Kumar Gupta ◽  
...  

In electrical discharge machining (EDM), the machined surface quality can be affected by the excessive temperature generation during the machining process. To achieve a longer life of the finished part, the machined surface quality plays a key role in maintaining its overall integrity. Surface roughness is an important quality evaluation of a material’s surface that has considerable influence on mechanical performance of the material. Herein, a sintered cermet tooltip with 75% copper and 25% titanium carbide was used as tool electrode for processing H13 steel. The experiments have been performed to investigate the effects of EDM parameters on the machined surface roughness. The findings show that, as the pulse current, pulse length, and pulse interval are increased, the surface roughness tends to rise. The most significant determinant for surface roughness was found to be pulse current. A semi-empirical surface roughness model was created using the characteristics of the EDM technique. Buckingham’s theorem was used to develop a semi-empirical surface roughness prediction model. The semi-empirical model’s predictions were in good agreement with the experimental studies, and the built empirical model based on physical features of the cermet tooltip was tested using dimensional analysis.


2000 ◽  
Vol 2000.53 (0) ◽  
pp. 49-50
Author(s):  
Rikio HIKIJI ◽  
Yoshihiro KAWANO ◽  
Koji ABURADA ◽  
Masakazu HARADA ◽  
Minoru ARAI

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


Sign in / Sign up

Export Citation Format

Share Document