scholarly journals Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger

Author(s):  
M SIVA ESWARA RAO ◽  
DOWLURU SREERAMULU ◽  
D ASIRI NAIDU
2020 ◽  
Vol 9 (1) ◽  
pp. 1793-1798

A heat exchanger is a device intensively used for enhancing the transfer of heat energy between two or more working fluids at different temperature, which are in thermal contact. The optimal design and efficient operation of heat exchanger and heat transfer network are of a great significance in any of the process industry. The heat transfer efficiency depends on both design of heat exchanger and property of working fluid. From various types of heat exchanger, the double stacked shell and tube heat exchanger with straight tube and single pass is to be under study. Here the redesign of heat exchanger takes place with the key objectives of optimizing the pressure drop, optimizing the heat transfer rate and reducing the saddle support weight used for cooling purpose in brewery application. The design calculations are carried out using the Kerns and Bell Delwar method and other important parameters dealing with material selection and geometries are also taken into consideration. FEA analysis for optimizing the saddle support weight is carried out using Dassault systeme’s Solidworks while the CFD analysis for optimizing pressure drop and heat transfer rate is carried out using Dassault systeme’s Solidworks analysis software and the design and working of Shell and tube heat exchanger is determined in terms of variables such as pressure ,temperature ,mass flow rate ,flow rate ,energy input output that are of particular interest in Shell and tube heat exchanger analysis.


Author(s):  
Ahmad Fakheri

The heat exchanger efficiency is defined as the ratio of the actual heat transfer in a heat exchanger to the optimum heat transfer rate. The optimum heat transfer rate, qopt, is given by the product of UA and the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids. The actual rate of heat transfer in a heat exchanger is always less than this optimum value, which takes place in a balanced counter flow heat exchanger. It is shown that for parallel flow, counter flow, and shell and tube heat exchanger the efficiency is only a function of a single nondimensional parameter called Fin Analogy Number. Remarkably, the functional dependence of the efficiency of these heat exchangers on this parameter is identical to that of a constant area fin with an insulated tip. Also a general algebraic expression as well as a generalized chart is presented for the determination of the efficiency of shell and tube heat exchangers with any number of shells and even number of tube passes per shell, when the Number of Transfer Units (NTU) and the capacity ratio are known. Although this general expression is a function of the number of shells and another nondimensional group, it turns out to be almost independent of the number of shells over a wide range of practical interest. The same general expression is also applicable to parallel and counter flow heat exchangers.


Author(s):  
R. Vivekananthan

Abstract: In this research paper, a hybrid controller is designed and developed which maintains the outlet temperature of a shell and tube heat exchanger by varying the cold water flow rate in such a way that conform the desired set value. Al2O3 nanofluid is mixed with water is to be used as the cooling fluid to increase the rate of heat transfer. PID controller only is not suitable for precise and a wide range of temperature control requirement. So that hybrid controller is designed and implemented by combining methods of fuzzy logic and PID controller’s concepts using Labview. Experiments were done on parallel flow shell and tube heat exchanger in a closed cycle system. The performance of the heat exchanger system is improved by a hybrid controller and the heat transfer rate is enhanced by aluminum oxide nanofluid. Keywords: Heat transfer, shell and tube heat exchanger, Al2O3 nanofluid, Labview, hybrid controller Introduction


Author(s):  
Jieun Hwang ◽  
Keumnam Cho

Heat exchanger experiences frost on its surface when it operates below 0°C under heating condition of the heat pump. Since frost blocks air flow through the fin tube heat exchanger, it increases air-side pressure drop and deteriorates heat transfer rate of the heat exchanger. Prediction of the frost profiles on the heat exchanger is needed to minimize the unfavorable effect on the heat exchanger by frost. The present study predicts non-uniform frost distribution on the surface of fin-tube heat exchanger and shows its accuracy by comparing with measured profiles. Fin and tube heat exchanger for heat pump was considered for the frost prediction under practical refrigerant and air conditions. Non-uniform frost pattern was predicted by using segment by segment method of the heat exchanger. Heat transfer rate and exit temperature of air and refrigerant for each segment were calculated by applying ε-NTU method. Air volume flow rate in the front of the heat exchanger was decreased as frost goes on. It was utilized for the prediction of the frost formation. Numerically predicted results were compared with measured local data. They agreed within ±10.4% under the ISO 5151 condition.


2015 ◽  
Vol 787 ◽  
pp. 72-76 ◽  
Author(s):  
V. Naveen Prabhu ◽  
M. Suresh

Nanofluids are fluids containing nanometer-sized particles of metals, oxides, carbides, nitrides, or nanotubes. They exhibit enhanced thermal performance when used in a heat exchanger as heat transfer fluids. Alumina (Al2O3) is the most commonly used nanoparticle due to its enhanced thermal conductivity. The work presented here, deals with numerical simulations performed in a tube-in-tube heat exchanger to study and compare flow characteristics and thermal performance of a tube-in-tube heat exchanger using water and Al2O3/water nanofluid. A local element-by-element analysis utilizing e-NTU method is employed for simulating the heat exchanger. Profiles of hot and cooling fluid temperatures, pressure drop, heat transfer rate along the length of the heat exchanger are studied. Results show that heat exchanger with nanofluid gives improved heat transfer rate when compared with water. However, the pressure drop is more, which puts a limit on the operating conditions.


Sign in / Sign up

Export Citation Format

Share Document