scholarly journals Improving indoor air quality and thermal comfort in office building by using combination filters

Author(s):  
H Kabrein ◽  
M Z M Yusof ◽  
A Hariri ◽  
A M Leman ◽  
A Afandi
2014 ◽  
Vol 20 (7) ◽  
pp. 731-737 ◽  
Author(s):  
Fu-Jen Wang ◽  
Meng-Chieh Lee ◽  
Tong-Bou Chang ◽  
Yong-Sheng Chen ◽  
Ron-Chin Jung

Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


2016 ◽  
pp. 67-98
Author(s):  
T. Agami Reddy ◽  
Jan F. Kreider ◽  
Peter S. Curtiss ◽  
Ari Rabl

2021 ◽  
Vol 246 ◽  
pp. 03005
Author(s):  
Eusébio Conceição ◽  
João Gomes ◽  
Mª Manuela Lúcio ◽  
Hazim Awbi

In this numerical study the energy production in solar collectors in a University building used to improve the internal thermal conditions is made. Passive and active solutions, using external solar collector and internal thermo-convectors, are used. The numerical simulation, in transient conditions, is done for a winter typical day with clean sky. This numerical study was carried out using a software that simulates the Building Dynamic Response with complex topology in transient conditions. The software evaluates the human thermal comfort and indoor air quality levels that the occupants are subjected, Heated Ventilation and Air Conditioned energy consumption, indoor thermal variables and other parameters. The university building has 107 compartments and is located in a Mediterranean-type environment. External solar water collectors, placed above the building’s roof, and internal thermo-convectors of water/air type, using mixing ventilation, are used as passive and active strategies, respectively. The thermal comfort level, using the Predicted Mean Vote index, and the indoor air quality, using the carbon dioxide concentration, are evaluated. The results show that in winter conditions the solar collectors improve the thermal comfort conditions of the occupants. The indoor air quality, in all ventilated spaces, is also guaranteed.


2019 ◽  
Vol 14 (4) ◽  
pp. 93-109
Author(s):  
Abd Halid Abdullah ◽  
Yee Yong Lee ◽  
Eeydzah Aminudin ◽  
Yeong Huei Lee

The indoor air quality (IAQ) in office buildings should be assessed for public health concerns as it relates to work performance and productivity. Therefore, this paper aims to assess the IAQ in a university office building. From this investigation, the level of contaminated indoor air is examined, the significant causes and contributing factors of contaminated indoor air are determined and a recommendation to improve the existing condition has been proposed. The physical parameters measured include air temperature, air velocity, relative humidity, and concentrations of carbon dioxide (CO2), carbon monoxide (CO), sulphur dioxide (SO2), and also air particles. It was found that the number of air particles of 0.5 μm in diameter is about 197,748 particles/m3, while air particles of 5.0 μm in diameter is around 534 particles/m3. The collected data were then compared with a questionnaire and IAQ standards. In conclusion, the indoor air quality within the multi-storey central office building of Universiti Tun Hussein Onn Malaysia (UTHM) is acceptable and suitable for occupation even though there were countable symptoms of Sick Building Syndrome (SBS) among its occupants.


Data in Brief ◽  
2018 ◽  
Vol 20 ◽  
pp. 74-79 ◽  
Author(s):  
Zahra Atarodi ◽  
Kamaladdin Karimyan ◽  
Vinod Kumar Gupta ◽  
Morteza Abbasi ◽  
Masoud Moradi

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1596 ◽  
Author(s):  
Csáky ◽  
Kalmár ◽  
Kalmár

Using personalized ventilation systems in office buildings, important energy saving might be obtained, which may improve the indoor air quality and thermal comfort sensation of occupants at the same time. In this paper, the operation testing results of an advanced personalized ventilation system are presented. Eleven different air terminal devices were analyzed. Based on the obtained air velocities and turbulence intensities, one was chosen to perform thermal comfort experiments with subjects. It was shown that, in the case of elevated indoor temperatures, the thermal comfort sensation can be improved considerably. A series of measurements were carried out in order to determine the background noise level and the noise generated by the personalized ventilation system. It was shown that further developments of the air distribution system are needed.


Sign in / Sign up

Export Citation Format

Share Document