scholarly journals Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

Author(s):  
Cococeanu Adrian-Lucian ◽  
Cretan Ioana-Alina ◽  
Cojocinescu Mihaela Ivona ◽  
Man Teodor Eugen ◽  
Pelea George Narcis
2018 ◽  
Vol 28 (3) ◽  
pp. 79-89 ◽  
Author(s):  
Ewelina Płuciennik-Koropczuk ◽  
Patrycja Kumanowska

Abstract The article presents the results of research on changes in selected water parameters during distribution in the water supply network of the city of 22 thousand inhabitants. Water parameters were controlled at 8 points in the network, distant from Water Treatment Plant from 0.4 to 3.1 km. The location of control points was selected in order to assess the water quality depending on the pipe material and at unfavourable points - at the ends of the network. It was shown that as a result of secondary water contamination an increase in turbidity, colour and total iron occurred. The distance from the Water Treatment Plant and the type of material of the network or connection, affect the quality of the water. It was confirmed that at the ends of the network the water parameters were increased and exceeded the admissible values.


2019 ◽  
Vol 29 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Anita Jakubaszek ◽  
Justyna Mossetty

Abstract The article presents physiochemical parameter changes in water supply network of Zielona Góra. On the basis of the obtained test results, the impact of prolonged retention of water in the network on its quality was determined, at the measuring points located on the territory of Zielona Góra. It was shown that together with an increase in distance of measuring points from Water Treatment Plant, content of mainly iron, turbidity and colour increased too. In the results analysis, it was determined that retention time and water distribution are the most significant factors in the network contributing to deterioration of water quality at measuring points.


2018 ◽  
Vol 34 ◽  
pp. 02043
Author(s):  
Mohd Faizal Ab Jalil ◽  
Nasrul Hamidin ◽  
Ahmad Anas Nagoor Gunny ◽  
Ain Nihla Kamarudzaman

In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs). THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP) located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS). The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Anne Louise de Melo Dores ◽  
Felipe Corrêa Veloso dos Santos

AbstractTo elaborate efficient and economical water supply systems is one of the main objectives in the sanitation companies water system projects. In order to address the challenges faced in reaching this objective, this study aims to identify, first, the relation between the percentage of non-conformed samples in treated water and the inefficiency of the filtering units installed in the water treatment plant, and second, if, by drawing the consumption variation curve it is the most efficient way to predict the storage tanks volume—comparing necessary capacity, determined by the consumption curve, and installed capacity, predict by the outdated Brazilian normative. In order to reach answers for these two questions, this study measured the operating efficiency of the treatment plant as well as have set a quantitative comparison between the two dimensioning criteria for storage tanks volume present in the literature. As a result, the analysis provided the authors to detect a focus of contamination in the single-layered filtering units, limited by the filtering capacity of 2–6 m3/(m2 day), whilst operating at 333.13 m3/(m2 day). As well as to detect by the drawing of the consumption variation curve an oversize of 68% and 60% in the dimensioning of the studied storage tanks. With the results provided by this analysis approach, it was possible to efficiently detect and correct critical impairments in the treatment phase and to conclude that a long-term analysis should be drawn in order to affirm if the consumption variation curve is the best design methodology for the reservoirs.


2016 ◽  
Vol 16 (4) ◽  
pp. 922-930 ◽  
Author(s):  
L. Richard ◽  
E. Mayr ◽  
M. Zunabovic ◽  
R. Allabashi ◽  
R. Perfler

The implementation and evaluation of biological nitrification as a possible treatment option for the small-scale drinking water supply of a rural Upper Austrian community was investigated. The drinking water supply of this community (average system input volume: 20 m3/d) is based on the use of deep anaerobic groundwater with a high ammonium content of geogenic origin (up to 5 mg/l) which must be treated to prevent the formation of nitrites in the drinking water supply system. This paper describes the implementation and operation of biological nitrification despite several constraints including space availability, location and financial and manpower resources. A pilot drinking water treatment plant, including biological nitrification implemented in sand filters, was designed and constructed for a maximum treatment capacity of 1.2 m3/h. Online monitoring of selected physicochemical parameters has provided continuous treatment performance data. Treatment performance of the plant was evaluated under standard operation as well as in the case of selected malfunction events.


Author(s):  
Marina Valentukeviciene ◽  
Aukse Amosenkiene ◽  
Regimantas Dauknys

Quality changes of drinking water in the water supply network (case study from Lithuania) The purpose of this research was to examine water quality changes by distributing in to the water supply network. Water samples were collected from Varena town (Lithuania) drinking water distribution system fed by groundwater from well field. Parameters related to undesirable increasing of nitrites and nitrates concentrations have been measured considering these samples: pH, conductivity, concentration of total iron, manganese, ammonium, nitrates and nitrites. Results showed that groundwater from well field were extremely susceptible to favor bacterial growth in the pipelines. The occurrence of nitrites and nitrates in drinking water samples correlated positively with the lengths of old iron pipelines and negatively with the content of newly laid pipelines. The obtained results also showed that the potential nitrates increasing induced by the distribution of treated water could be reduced if: nitrates levels were below detection limits at the outlet of the water treatment plant; biological ammonium removal treatment implementation should reduce the levels of the nitrates and nitrites of the treated supplied water. Although the nitrates concentration increase in drinking water distribution systems, the issues with nitrites accumulation are rare in Lithuania. However, such processes still need to be proved in more extensive investigation, but these research results could be applied as a basic scenario.


Sign in / Sign up

Export Citation Format

Share Document