scholarly journals Foam Glass Production from Waste Glass by Compression

Author(s):  
D D Khamidulina ◽  
S A Nekrasova ◽  
K M Voronin
Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5458
Author(s):  
Petra Mácová ◽  
Konstantinos Sotiriadis ◽  
Zuzana Slížková ◽  
Petr Šašek ◽  
Michal Řehoř ◽  
...  

Foam glass production process redounds to large quantities of waste that, if not recycled, are stockpiled in the environment. In this work, increasing amounts of waste foam glass were used to produce metakaolin-based alkali-activated composites. Phase composition and morphology were investigated by means of X-ray powder diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. Subsequently, the physical properties of the materials (density, porosity, thermal conductivity and mechanical strength) were determined. The analysis showed that waste foam glass functioned as an aggregate, introducing irregular voids in the matrix. The obtained composites were largely porous (>45%), with a thermal conductivity coefficient similar to that of timber (<0.2 W/m∙K). Optimum compressive strength was achieved for 10% incorporation of the waste by weight in the binder. The resulting mechanical properties suggest the suitability of the produced materials for use in thermal insulating applications where high load-bearing capacities are not required. Mechanical or chemical treatment of the waste is recommended for further exploitation of its potential in participating in the alkali activation process.


2019 ◽  
Vol 974 ◽  
pp. 356-361
Author(s):  
O.V. Kuznetsova ◽  
N.D. Yatsenko ◽  
A.I. Subbotin ◽  
M.Yu. Klimenko

The modern building materials market places high demands on heat-insulating and heat-insulating structural materials. In this connection, the issues of developing high-quality building materials obtained on the resource-saving technologies basis allowing to solve two interrelated problems are topical. The first problem is the industrial waste generated and existing stocks disposal. The second is associated with a decrease in the traditional raw materials deficit [1]. These problems solution, combining rational technological solutions, is based on the scientific research achievements in this area, in particular in the foam glass production. The priority scientific research areas in the foam glass materials production are the developments related to the study, the new raw materials use and the production of foam glass mixture compositions on their basis, which provide, along with the necessary performance properties, high environmental safety requirements [2, 3].


2006 ◽  
Vol 105 (1) ◽  
pp. 32-39 ◽  
Author(s):  
J. P. Wu ◽  
A. R. Boccaccini ◽  
P. D. Lee ◽  
M. J. Kershaw ◽  
R. D. Rawlings

2019 ◽  
Vol 215 ◽  
pp. 623-632 ◽  
Author(s):  
Ru Ji ◽  
Yaxian Zheng ◽  
Zehui Zou ◽  
Ziwei Chen ◽  
Shen Wei ◽  
...  

2014 ◽  
Vol 132 ◽  
pp. 176-178 ◽  
Author(s):  
Haibo Wang ◽  
Keqin Feng ◽  
Yu Zhou ◽  
Qingzhu Sun ◽  
Huan Shi

2017 ◽  
Vol 9 (4) ◽  
pp. 419-423 ◽  
Author(s):  
Ramunė Žurauskienė ◽  
Marina Valentukevičienė ◽  
Raminta Žurauskaitė

Inorganic material – granulated foam-glass produced from glass breakage in small porous granule shape. Foam-glass is gotten by connecting thoroughly grounded glass with foamers, later this composition is heated in the furnace in especially high temperature and is turned into various diameter greyish granules. Granulated foam-glass is a unique ecological material of which inner structure pores are arranged in such a way that air is trapped inside. Foam-glass production technology is one of the most advanced since the product is made from secondary raw materials, not leaving any third row waste. From granule surface images it can be seen that granule surface has pores and voids, some of these pores are closed, others are connected with granule’s inner pores, all pore walls are smooth, and the wall material is vitrified. Pores and voids are arranged chaotically in smaller granules, bigger granules inner space structure is tidy, bigger part is occupied by correctly arranged bigger pores and space between them is filled with smaller pores. Granules are composed of amorphous phase, in mineralogical composition can emit one material cristobalite. In the work were researched two fraction granules: 0/2 and 2/4 as well as determined 0/4 fraction granular-metric composition. Researched and determined main physical granule properties and properties related to water effect to the material, shown in micro-structural granule surface and inner structure images. According to explored properties it can be noted that granules can be adapted in water cleaning technologies.


2021 ◽  
Vol 9 (2) ◽  
pp. 237-253
Author(s):  
Yang Liu ◽  
Jianjun Xie ◽  
Peng Hao ◽  
Ying Shi ◽  
Yonggen Xu ◽  
...  

2018 ◽  
Vol 41 ◽  
pp. 02017 ◽  
Author(s):  
Natalia Gilyazidinova ◽  
Nadezhda Rudkovskaya ◽  
Tatiana Santalova

The purpose of the research is to determine the starting material composition, the conditions for its heat treatment and operation, and also the development of the recommendations on the technology of manufacturing and use of slag-foam glass as a structural and thermal insulation material for low-rise construction. Research and development of the composition and technology of ferrosilicate dust - a secondary product of the Novokuznetsk ferroalloy plant and Kemerovo chemical enterprises - slag-foam glass production, were carried out taking intoaccount the need for recycling of waste generated during the production process. The liquid sodium glass production waste is a mixture offerrosilicate dust that is not completely exhausted in the reactors and anaqueous Na2OSiO2 solution. Its density varies from 1.2 g/cm3 to 1.5 g/cm3, and the binding properties are extremely unstable, they depend on the soluble glass and water ratio in the waste. The use of this material as the basis for the production of structural and thermal insulating slag-foamglass with the stable strength index, the average density and the long-term durability is quite relevant.


Sign in / Sign up

Export Citation Format

Share Document