scholarly journals Influence on the weld strength of high-strength fine-grained structural steels by thin-film-coated GMA welding electrodes

Author(s):  
V Wesling ◽  
K Treutler ◽  
T Gehling
2020 ◽  
Vol 64 (12) ◽  
pp. 1997-2009
Author(s):  
Thomas Schaupp ◽  
Michael Rhode ◽  
Hamza Yahyaoui ◽  
Thomas Kannengiesser

Abstract High-strength structural steels are used in machine, steel, and crane construction with yield strength up to 960 MPa. However, welding of these steels requires profound knowledge of three factors in terms of avoidance of hydrogen-assisted cracking (HAC): the interaction of microstructure, local stress/strain, and local hydrogen concentration. In addition to the three main factors, the used arc process is also important for the performance of the welded joint. In the past, the conventional transitional arc process (Conv. A) was mainly used for welding of high-strength steel grades. In the past decade, the so-called modified spray arc process (Mod. SA) has been increasingly used for welding production. This modified process enables reduced seam opening angles with increased deposition rates compared with the Conv. A. Economic benefits of using this arc type are a reduction of necessary weld beads and required filler material. In the present study, the susceptibility to HAC in the heat-affected zone (HAZ) of the high-strength structural steel S960QL was investigated with the externally loaded implant test. For that purpose, both Conv. A and Mod. SA were used with same heat input at different deposition rates. Both conducted test series showed same embrittlement index “EI” of 0.21 at diffusible hydrogen concentrations of 1.3 to 1.6 ml/100 g of arc weld metal. The fracture occurred in the HAZ or in the weld metal (WM). However, the test series with Mod. SA showed a significant extension of the time to failure of several hours compared with tests carried out with Conv. A.


2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Kai Treutler ◽  
Volker Wesling

AbstractWelding-related loss of strength, especially in the case of fatigue, significantly reduces the range of applications for high-strength fine-grained structural steels. In order to counteract this situation, the aim of the work is to increase the strength of welded joints made of high-strength fine-grained structural steels by using coated welding consumables. This is described using the example of a titanium coating for quasi-static and abrupt dynamic load and fatigue. The thermomechanical rolled fine-grained structural steel S700MC is used as the base material, using a welding filler of the same type. MAG welding was used to produce the fillet welds on a T-joint. In addition to tensile tests at four different load speeds up to 2 m/s, the results of fatigue tests are presented. In addition, the microstructure of the weld seams is examined by metallographic methods and the scanning electron microscope. A comparison with two joints from an unmodified variant and another steel grade with comparable properties (S690QL) serves to classify the results. It is shown that the use of modified filler metals has a significant influence on the overall strength of the welded joint due to the rounding of the weld toe. Thus, the fatigue strength can be increased by around 50%. In addition, the strength under sudden dynamic load can be increased by 10%.


2004 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Jörg Hildebrand ◽  
Frank Werner

First, the production process of fine‐grained structural steels was considered. The results from the thermal calculation, which is a part of the welding simulation, were compared with measurements and good concordance was achieved. A modification of the hardness was found during the analysis of the hardness curve, the so‐called local hardness drop. The reason was the transformation of the structure, caused by thermal factors. The available TTA (time‐temperature‐austenite) and available TTT (time‐temperature‐transformation) diagrams do not describe this tempering process, which results in tempering structural condition by means of constituents of the martensite and bainite. The method of solution was applied to an example of a mismatch‐joint and a good concordance was achieved.


Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Dillimax 550 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 690 MPa (100 ksi). Plate is delivered in three qualities: basic, tough, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-652. Producer or source: Dillinger Hütte GTS.


Alloy Digest ◽  
2012 ◽  
Vol 61 (3) ◽  

Abstract Dillimax 500 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 500 MPa (72 ksi). Plate is delivered in three qualities: basic, high toughness, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, heat treating, and joining. Filing Code: SA-645. Producer or source: Dillinger Hütte GTS.


Sign in / Sign up

Export Citation Format

Share Document