scholarly journals Effect of waste glass addition on mechanical properties of slag based geopolymers

Author(s):  
M Marcin ◽  
M Sisol ◽  
I Brezani
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Md. Raquibul Hasan ◽  
Ayesha Siddika ◽  
Md. Parvez Ali Akanda ◽  
Md. Rabyul Islam

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3189 ◽  
Author(s):  
Marcin Małek ◽  
Waldemar Łasica ◽  
Mateusz Jackowski ◽  
Marta Kadela

A responsible approach towards sustainable development requires the use of environmentally friendly, low-carbon, and energy-intensive materials. One positive way is to use glass waste as a replacement for fine natural aggregate. For this purpose, the effects of adding glass cullet to the mechanical properties of mortar were carried out. The glass aggregate made from recycled post-consumer waste glass (food, medicine, and cosmetics packaging, including mostly bottles), were used. This experimental work included four different contents of fine glass cullet (5, 10, 15, and 20 wt.% of fine aggregate). The compressive, flexural, and split tensile strengths were evaluated. Moreover, the modulus of elasticity and Poisson coefficient were determined. The addition of glass sand aggregate increases the mechanical properties of mortar. When comparing the strength, the obtained improvement in split tensile strength was the least affected. The obtained effect for the increased analysed properties of the glass sand aggregate content has been rarely reported. Moreover, it was determined that by increasing the recycled glass sand aggregate content, the density of mortar decreased. In addition, the relationships between the properties for mortar containing glass sand aggregate were observed.


2004 ◽  
Vol 34 (12) ◽  
pp. 2181-2189 ◽  
Author(s):  
Seung Bum Park ◽  
Bong Chun Lee ◽  
Jeong Hwan Kim

2012 ◽  
Vol 626 ◽  
pp. 280-288 ◽  
Author(s):  
Jariah Mohd Juoi ◽  
Dilip Arudra ◽  
Zulkifli Mohd Rosli ◽  
A.R. Toibah ◽  
Siti Rahmah Shamsuri ◽  
...  

Incineration of scheduled waste and landfilling of the incineration residue (Bottom Slag) is extensively practised in Malaysia as a treatment method for scheduled waste. Land site disposal of Bottom Slag (BS) may lead to environmental health issues and reduces the availability of land to sustain the nations development. This research aims in producing Glass Composite Material (GCM) incorporating BS and Soda Lime Silicate (SLS) waste glass as an alternative method for land site disposal method and as an effort for recycling SLS waste glass .SLS waste glass originates from the urban waste and has been a waste stream in most of the nation whereby the necessity for recycling is in high priority.The effect of BS waste loading on the GCM is studied.Batches of powder mixture is formulated with 30 wt% to 70 wt % of BS powder and SLS waste glass powder for GCM sintering.The powder mixtures of BS and SLS waste glass is compacted by uniaxial pressing method and sintered at 800C with heating rate of 2C/min and 1 hour soaking time. Physical analysis of bulk density, apparent porosity, and water absorption is perfomed according to ASTM C-373 standard. Mechanical testing of microhardness vickers according to ASTM C1327 and Modulus of Rupture (MOR) according to ISO 10545-4 is conducted. Microstructural analysis is carried out using Scanning Electron Microscope and phase analysis by X-ray diffraction method.Phases identified are Anorthite sodian,Quartz,Hematite and Diopside from X-ray diffraction analysis. Higher BS waste loading shows weak physical and mechanical properties .GCM from batch formulation of 30 wt % BS and 70 wt% SLS waste glass has projected optimized physical and mechanical properties. It is observed this batch has projected lowest water absorption percentage of 1.17 % , lowest porosity percentage of 2.2 %, highest bulk density of 1.88 g/cm3and highest MOR of 70.57 Mpa and 5.6 GPa for Vickers Microhardness.


2021 ◽  
pp. 252-261

The combustion of fossil fuels results in creating a lot of solid wastes such as fly ash and slag. However, these environmentally unfriendly materials can be used as a raw material for alkali activation – geopolymerization. Although these wastes have been successfully used in industrial production for several decades, its use does not achieve the level of its potential. Today, to achieve a sustainable construction industry, alternative cement has been extensively investigated. Geopolymer (GP) is a kind of material that is obtained from the alkaline activator, and it can be produced from industrial wastes or by-products. The aim of this work was to describe the improvement of mechanical properties of alkali-activated binders – geopolymers made of fly ash and blast furnace slag. The effect of the addition of waste glass in three different values feed into fly ash or GGBFS, and its impact on mechanical properties (compressive and flexural strengths) of geopolymers was examined. The highest value of compressive strength was achieved with 20% waste glass addition to a fly ash sample on 90th day 58,9 MPa. The waste glass was added in the form of broken and crushed glass particles.


Sign in / Sign up

Export Citation Format

Share Document