scholarly journals Performance and emission characteristics of diesel engine fuelled with methyl ester of waste vegetable oil blended diesel fuel with additives of DEE

Author(s):  
Rishi Malhotra ◽  
S Arul Kumar ◽  
G Manikandaraja ◽  
V Mathanraj
Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


2015 ◽  
Vol 19 (6) ◽  
pp. 1967-1975
Author(s):  
Balakrishnan Nanjappan ◽  
Goundar Kavandappa ◽  
Nedunchezhian Natarajan

An experimental study to measure the evaporation rates, engine performance and emission characteristics of used vegetable oil methyl ester and its blends with producer gas on naturally aspirated vertical single cylinder water cooled four stroke single cylinder diesel engine is presented. The thermo-physical properties of all the bio fuel blends have been measured and presented. Evaporation rates of used vegetable oil methyl ester and its blends have been measured under slow convective environment of air flowing with a constant temperature and the values are compared with fossil diesel. Evaporation constants have been determined by using the droplet regression rate data. The fossil diesel, biodiesel blends and producer gas have been utilized in the test engine with different load conditions to evaluate the performance and emission characteristics of diesel engine and the results are compared with each other. From these observations, it could be noted that, smoke and hydrocarbon drastically reduced with biodiesel in the standard diesel engine without any modifications.


2014 ◽  
Vol 6 ◽  
pp. 832470 ◽  
Author(s):  
Senthil Ramalingam ◽  
Paramasivam Chinnaia ◽  
Silambarasan Rajendran

This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR) engine with different blends of Annona methyl ester (AME) as fuel. The performance parameters such as specific fuel consumption (SFC), brake thermal efficiency (BTE), and emission levels of HC, CO, Smoke, and NO x were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel) shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17) to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.


Author(s):  
V. Anandram ◽  
S. Ramakrishnan ◽  
J. Karthick ◽  
S. Saravanan ◽  
G. LakshmiNarayanaRao

In the present work, the combustion, performance and emission characteristics of sunflower oil, sunflower methyl ester and its blends were studied and compared with diesel by employing them as fuel in a single cylinder, direct injection, 4.4 KW, air cooled diesel engine. Emission measurements were carried out using five-gas exhaust gas analyzer and smoke meter. The performance characteristics of Sunflower oil, Sunflower methyl ester and its blends were comparable with those of diesel. The components of exhaust such as HC, CO, NOx and soot concentration of the fuels were measured and presented as a function of load and it was observed that the blends had similar performance and emission characteristics as those of diesel. NOx emissions of sunflower oil methyl ester were slightly higher than that of diesel but that of sunflower oil was slightly lower than that of diesel. With respect to the combustion characteristics it was found that the biofuels have lower ignition delay than diesel. The heat release rate was very high for diesel than for the biofuel.


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


Sign in / Sign up

Export Citation Format

Share Document