scholarly journals 3D Numerical Modeling for Inductive Processes

Author(s):  
A. Gagnoud ◽  
Y. Du Terrail-Couvat ◽  
O. Budenkova
2001 ◽  
Author(s):  
Abhay A. Watwe ◽  
Ravi S. Prasher

Abstract Traditional methods of estimating package thermal performance employ numerical modeling using commercially available finite-volume or finite-element tools. Use of these tools requires training and experience in thermal modeling. This methodology restricts the ability of die designers to quickly evaluate the thermal impact of their die architecture due to the added throughput time required to enlist the services of a thermal analyst. This paper describes the development of an easy to use spreadsheet tool, which performs quick-turn numerical evaluations of the impact of non-uniform die heating. The tool employs well-established finite-volume numerical techniques to solve the steady-state, three-dimensional Fourier equation of conduction in the package geometry. Minimal input data is required and the inputs are customized using visual basic pull-down menus to assist die designers who may not be thermal experts. Data showing comparison of the estimates from the spreadsheet tool with that obtained from a conventional analysis using the commercially available finite element code ANSYS™ is also presented.


Author(s):  
Mohammad R. Aligoodarz ◽  
Mohammad Reza Soleimani Tehrani ◽  
Hadi Karrabi ◽  
Mohammad R. Roshani

Turbo machineries including compressors performance degrades over the period of operation and deviates from design levels due to causes including dust entrance into the compressor, blades mechanical damage, erosion and corrosion. These lead to reduction in compressor performance, efficiency and pressure ratio. Subsequently gas turbine performance is affected since their operation sate is correlated. In this study the numerical investigation of common causes that determine geometric characteristics of a 2-stage centrifugal compressor running in a gas station, including blades fouling and corrosion is performed. 3D Numerical modeling is implemented along with utilization of Shear Stress Transport (SST) turbulence model and independency from the grids is verified.


2021 ◽  
Vol 930 (1) ◽  
pp. 012030
Author(s):  
J Zulfan ◽  
B M Ginting

Abstract The spillway rating curve of the Riam Kiwa Dam was investigated via theoretical formula, laboratory experiment, and 3D numerical modeling. It is an ogee type with two uncontrolled and five gated spillways with a total length of 77.5 m. The experiment was performed with a scale of 1:50, while the numerical modeling was conducted using FLOW-3D software. Several discharge values (16.67–2,652.7 m3/s) were tested and observed for two different scenarios of gate openings. For the low discharge in Scenario 1, the theoretical formula and FLOW-3D computed the rating curve less accurately with the error values greater than 10%. A similar phenomenon was observed in Scenario 2, where both theoretical formula and FLOW-3D predicted the rating curve accurately with error values less than 10% for the higher discharge. The discharges tend to be overestimated for the water depth values greater than 2 m giving the average discharge deviation of 6% for the PMF condition. FLOW-3D was found to calculate water depth for all scenarios accurately. It shows a promising approach between numerical simulation and physical modeling, to minimize laboratory model construction costs.


2000 ◽  
Vol 126 (10) ◽  
pp. 949-953 ◽  
Author(s):  
Nils Reidar B. Olsen ◽  
Richard D. Hedger ◽  
D. Glen George

2019 ◽  
Vol 64 (3) ◽  
pp. 1252-1269 ◽  
Author(s):  
A. A. Cimatoribus ◽  
U. Lemmin ◽  
D. A. Barry

Sign in / Sign up

Export Citation Format

Share Document