scholarly journals Waste Heat Energy Recovery from Reciprocating Engine Using Thermoelectric Generator

Author(s):  
L J Yong ◽  
N S Kamarrudin ◽  
M S M Hashim ◽  
K S Basaruddin ◽  
A A Rahman
2019 ◽  
Vol 38 (1) ◽  
pp. 115
Author(s):  
Aleksandar Kosta Anastasovski

Drying processes are one of the main consumers of heat energy in production. Any decreases in heat consumption during the drying process will considerably decrease production costs. This study analyzes the high consumption of heat in the drying of baker`s yeast. The main task is to minimize the energy demand and lower the price of the final products with partial heat recovery. These changes will require system modifications. One of the most popular and effective methods that can be used in this case is heat process integration with Pinch Technology. In this study, a reference system was simulated with a mathematical model and analyzed for waste heat streams.This paper suggests the redesigning of a drying system for production of active dry yeast.  Selected streams that satisfy conditions for heat process integration were involved in the evaluation for a better solution. Two different scenarios were proposed as possible solutions. The suggested solutions are retrofit designs of Heat Exchanger Networks. These Heat Exchanger Networks include already installed heat exchangers as well as new heat transfer units. The selection of better design was made with economic analysis of investment. The proposed scenarios of the analyzed sub-system give improvement in heat energy recovery. The best determined solution reduces the cost and thus has the highest profitability, but not the highest heat energy recovery.


2019 ◽  
Vol 158 ◽  
pp. 3788-3794 ◽  
Author(s):  
Yang Luo ◽  
John Andresen ◽  
Henry Clarke ◽  
Matthew Rajendra ◽  
Mercedes Maroto-Valer

Mechanika ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 295-300
Author(s):  
Žilvinas ULDINSKAS ◽  
Vytautas DAGILIS

Growing environmental restrictions in energy production industry calls for greater efficiency and cleaner fuel burning processes. Biomass (wood chips) as a fuel is in great demand for boiler and power plants as it is considered widely available and relatively clean. While combining woodfuel flue gas and condensing economizers significantly raises the efficiency and makes it even more viable solution for energy production although the biomass fuel usage still has reservations in waste heat, which could be utilized. The calculation algorithm is presented for evaluation of subcooled biomass flue gas components concentration values which determine the leftover heat energy value carried by flue gas flow. Several cases of biomass quality (regarding moisture w=45%, 50%, 55% and 60%) and combustion process quality (regarding air excess value λ=1,2; 1,5; 1,8) in the flue gas temperature range of 50 to 20°C and effects for flue gas internal dynamic were examined. It was determined that water vapour amount depends only on temperature, while every other component concentration change with different air excess and temperature values. It was observed that further usage of biomass flue gas could result in up to 13% additional heat energy recovery for 1MW of fuel input, system combination together with condensing economizers could result in up to 31% of heat energy recovery.


Sign in / Sign up

Export Citation Format

Share Document