scholarly journals Occupant behaviour: a major issue for building energy performance

Author(s):  
Y Laaroussi ◽  
M Bahrar ◽  
M Elmankibi ◽  
A Draoui ◽  
A Si-Larbi
Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 131 ◽  
Author(s):  
Ahmed WA Hammad

Building energy performance tools are widely used to simulate the expected energy consumption of a given building during the operation phase of its life cycle. Deviations between predicted and actual energy consumptions have however been reported as a major limiting factor to the tools adopted in the literature. A significant reason highlighted as greatly influencing the difference in energy performance is related to the occupant behaviour of the building. To enhance the effectiveness of building energy performance tools, this study proposes a method which integrates Building Information Modelling (BIM) with artificial neural network model for limiting the deviation between predicted and actual energy consumption rates. Through training a deep neural network for predicting occupant behaviour that reflects the actual performance of the building under examination, accurate BIM representations are produced which are validated via energy simulations. The proposed method is applied to a realistic case study, which highlights significant improvements when contrasted with a static simulation that does not account for changes in occupant behaviour.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


2015 ◽  
Vol 29 (6) ◽  
pp. 2629-2638 ◽  
Author(s):  
Shushan Hu ◽  
Feng Liu ◽  
Cunchen Tang ◽  
Xiaojun Wang ◽  
Huaibei Zhou

Sign in / Sign up

Export Citation Format

Share Document