scholarly journals Impacts of Grid Frequency Variation on Dynamic Performance of DFIG Based Wind Turbine

Author(s):  
A. M. Shiddiq Yunus
2021 ◽  
Vol 9 (1) ◽  
pp. 96-103
Author(s):  
Ruba Asim Hamza ◽  
Amged Osman Abdelatif

Sudan is one of the developing countries that suffers from a lack of electricity, where the national electrification rate is estimated at 38.5%. In order to solve this problem, it is possible to use renewable energy sources such as wind energy. Beside many aspects to be considered at the design of wind turbine foundations, more attention should be given to the geotechnical part. There are many types of foundations for wind turbines. The foundation must satisfy two design criteria: 1) It should be safe against bearing failure in soils under design loads and settlements during the life of the structure must not cause structural damage; 2) In addition to static loads, wind turbine foundations loads are extremely eccentrically and the loading is usually highly dynamic. Therefore, the selection of foundation type should consider these two criteria taking into account the nature and magnitude of these loads. This paper presents a review of different types of wind turbine foundations of focusing on on-shore wind turbine foundation types and the dynamic response of wind turbine. The paper also demonstrate experimentally the dynamic response of the wind turbines using wind tunnel facility test on a scaled model.  


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3526 ◽  
Author(s):  
Jieyan Chen ◽  
Chengxi Li

The increased interest in renewable wind energy has stimulated many offshore wind turbine concepts. This paper presents a design optimization and a coupled dynamics analysis of a platform with a single tether anchored to the seabed supported for a 5 MW baseline wind turbine. The design is based on a concept named SWAY. We conduct a parametric optimization process that accounts for important design considerations in the static and dynamic view, such as the stability, natural frequency, performance requirements, and cost feasibility. Through these optimization processes, we obtain and present the optimized model. We then establish the fully coupled aero-hydro-servo-elastic model by the time-domain simulation tool FAST (Fatigue, Aerodynamics, Structures, and Turbulence) with the hydrodynamic coefficients from an indoor program HydroGen. We conduct extensive time-domain simulations with various wind and wave conditions to explore the effects of wind speed and wave significant height on the dynamic performance of the optimized SWAY model in various water depths. The swivel connection between the platform and tether is the most special design for the SWAY model. Thus, we compare the performance of models with different tether connection designs, based on the platform motions, nacelle velocity, nacelle accelerations, resonant behaviors, and the damping of the coupled systems. The results of these comparisons demonstrate the advantage of the optimized SWAY model with the swivel connection. From these analyses, we prove that the optimized SWAY model is a good candidate for deep water deployment.


Inventions ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 19 ◽  
Author(s):  
Meisam Jahanshahi Zeitouni ◽  
Ahmad Parvaresh ◽  
Saber Abrazeh ◽  
Saeid-Reza Mohseni ◽  
Meysam Gheisarnejad ◽  
...  

This paper proposes a novel adaptive controller based on digital twin (DT) by integrating software-in-loop (SIL) and hardware-in-loop (HIL). This work aims to reduce the difference between the SIL controller and its physical controller counterpart using the DT concept. To highlight the applicability of the suggested methodology, the regulation control of a horizontal variable speed wind turbine (WT) is considered for the design and assessment purposes. In the presented digital twin framework, the active disturbance rejection controller (ADRC) is implemented for the pitch angle control of the WT plant in both SIL and HIL environments. The design of the ADRC controllers in the DT framework is accomplished by adopting deep deterministic policy gradient (DDPG) in two stages: ( i ) by employing a fitness evaluation of wind speed error, the internal coefficients of HIL controller are adjusted based on DDPG for the regulation of WT plant, and ( ii ) the difference between the rotor speed waveforms in HIL and SIL are reduced by DDPG to obtain a similar output behavior of the system in these environments. Some examinations based on DT are conducted to validate the effectiveness, high dynamic performance, robustness and adaptability of the suggested method in comparison to the prevalent state-of-the-art techniques. The suggested controller is seen to be significantly more efficient especially in the compensation of high aerodynamic variations, unknown uncertainties and also mechanical stresses on the plant drive train.


2010 ◽  
Vol 139-141 ◽  
pp. 1400-1405
Author(s):  
Wang Yu Liu ◽  
Yong Zhang

The bend-twist coupling design method of spar cap of 1.5MW wind turbine blade made by biased hybrid fibers is discussed, and the coupling parameter is established. It is found that flap-twist coupling effect is only related to the laminated materials, not sensitive to the geometry shape. When varying the angle of off-axis carbon fibers from 7.5° to 30° and the volume fraction from 10% to 90%, different bend-twist coupling effect can be obtained. The results show that the optimal angle of spar cap is closer to 18°, and of skins are about 13°. When constraints, such as fibers strain, the in-plane shear stress and Von Mises stress of static index, are added on the blade, the spar cap is optimized with about 45% carbon fiber volume fraction and 18° off-axis angle. Finally, the impact of natural frequencies of dynamic performance on the blade design is proved to be inessential.


Automatic Generation Control of two area multi unit interconnected thermal power system with dynamic participation of Doubly Fed Induction Generator based on the wind turbines. In this work two areas consisting of three unequal turbines both areas are connected to the DFIG based wind turbine. Area 1 consisting of three reheat turbines with Doubly Fed Induction Generator based on wind turbine and area2 consisting of three non reheat turbines with Doubly Fed Induction Generator based on wind turbine and two areas interconnected by tie line. Two different controllers are used, namely PID and cascaded PD-PI controllers. The controllers effectively tuned by hybridization algorithm. 1% step load disturbance is applied in area 1 for analyzing the dynamic performance. The performance of two area multi-unit power system is done in MATLAB/SIMILINK software. The dynamic response of the considered system is compared in terms of undershoots, overshoot and settling times


Sign in / Sign up

Export Citation Format

Share Document