scholarly journals Behavior of hybrid Reinforced Concrete Beams made with two types of concrete (Normal Weight and Reactive Powder Concrete)

Author(s):  
Khudhayer Najim Abdullh Kammash ◽  
Ayad Hameed Mseer ◽  
Osama Abd Alameer Eedan
2018 ◽  
Vol 7 (4) ◽  
pp. 2753
Author(s):  
Ibtihal Fadhil ◽  
Ayad K. Kadhem ◽  
Nisreen Salih

Reactive powder concrete is a new concrete that has been used in recent years because of many advantages. The use of reactive powder concrete in structural elements such as beams provides higher compressive strength, higher modulus of elasticity, durable concrete and increasing the concrete ductility, so that the concrete has high resistance against tensile stress. The experimental tests of the reinforced concrete beams under the effects of impact loadings are investigated in this paper. The parameters being adopted in present paper are steel fiber of (1, 1.5 and 2%) by volume, dropped mass and height of drop. The reinforced concrete specimens were tested under impact load by one strike only. The test results indicate that the impact force increased when the compressive strength of concrete increased that when the steel fiber ratio becomes more and the deflection has become less.  


2021 ◽  
Vol 25 (Special) ◽  
pp. 4-44-4-56
Author(s):  
Mohammed S. Zimmawe ◽  
◽  
Nagham T. Hamad ◽  

Thin fiber reinforcement and rehabilitation of reinforced concrete beams Concrete jackets have several benefits, including increased ultimate load and improved serviceability limit condition. The current paper was carried out to investigate the effect of the strengthening and repairing by using reactive powder concrete(RPC) jacket for reinforced concrete beams that’s casted with recycled coarse aggregate (RCA) in enhancement the mechanical properties such as load capacity and deflection . Nine reinforced concrete beams mm were casted by using RCA with constant details and jacketed with RPC with variable of steel fiber content and jacket thickness to estimate the optimum details. The result showed the effectiveness of the proposed technique in both deflection and ultimate load.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4173 ◽  
Author(s):  
Zbigniew Perkowski ◽  
Mariusz Czabak ◽  
Stefania Grzeszczyk ◽  
Daniel Frączek ◽  
Karolina Tatara ◽  
...  

The article describes four-point bending tests of three reinforced concrete beams with identical cross-sections, spans, and high-ductility steel reinforcement systems. Two beams were strengthened in the compressed section with a thin layer of reactive powder concrete (RPC) bonded with evenly spaced stirrups. Their remaining sections, and the third reference beam, were made of ordinary concrete. Measurements of their deflections, strains and axis curvature; ultrasonic tests; and a photogrammetric analysis of the beams are the main results of the study. For one of the beams with the RPC, the load was increased in one stage. For the two remaining beams, the load was applied in four stages, increasing the maximum load from stage to stage in order to allow the analysis of the damage evolution before reaching the bending resistance. The most important effect observed was the stable behaviour of the strengthened beams in the post-critical state, as opposed to the reference beam, which had about two to three times less energy-absorbing capacity in this range. Moreover, thanks to the use of the RPC layer, the process of concrete cover delamination in the compression zone was significantly reduced, the high ductility of the rebars was fully utilized during the formation of plastic hinges, and the bending capacity was increased by approximately 12%.


2018 ◽  
Vol 25 (3) ◽  
pp. 30-39
Author(s):  
Husain Khalaf Jarallah ◽  
Nidaa Qassim Jassim

In this investigation the effect of large web opening on the on the behaver of beams made by normal concrete (NC) and reactive powder concrete (RPC) have been studied. The experimental work consists of casting and testing in flexure 12 rectangular simply supported reinforced concrete beams. The main parameters of this test are opening locations and normal concrete and RPC location with is the section. The ultimate loads, cracking loads, load -deflection behavior, skew of the openings (deflection at the two opposite corners of openings) and ductility were discussed. These results showed that increase ultimate loads (Pu) and stiffness by increase RPC layers. The using RPC layers increase ultimate load about (1-30) %. Using RPC in compression fiber is found to be more effective than using RPC in tension fiber. The cracking load of hybrid beam with one layer of RPC in compression fiber (having one opening) higher than NC beams by 48.5%. The ultimate strength was decreases with increases opening about (4-21)%, thus indicating that the stiffness decreases accordingly. Hybrid beams with RPC in tension fiber failed with less crack than those for hybrid beams with RPC in compression fiber at the same number of openings. The skew at opening of flexural zone show greater values than the skew at opening in shear zone for each beam until failure. The increase in the number of openings leads to increase in the ductility because it reduces the strength of beams.


2019 ◽  
Vol 8 (2) ◽  
pp. 346
Author(s):  
Lekan Makanju Olanitori ◽  
Jeremiah Ibukun Okusami

Reduction in self-weight of Palm Kernel Shell Concrete (PKSC) over Normal Weight Concrete (NWC), reduces the amount of cement needed for construction, this is accompanied by reduction in CO2 emission associated with the production of cement: This will have reduction effect on the greenhouse, a major cause of climate change. This study carries out the comparative analysis of the strength characteristics of NWC and PKSC beams produced from four concrete mixes of 0%, 20%, 40% and 60% partial replacement of crushed granite by palm kernel shell (PKS).  From each concrete mix, two beams were cast: one with shear reinforcement of 200mm spacing, while the other one without shear reinforcement, making total of eight beams. From the study, the PKS concrete beams were 3.6%, 11.24% and 15.64% lighter than the NWC beams for 20%, 40% and 60% partial PKS replacement. The study shows that reinforced concrete beams produced from 20% and 40% partial replacement of crushed aggregate by PKS have the potential of being used for structural purposes in low cost buildings. Keywords: Palm Kernel Shell Concrete, Normal weight concrete, Palm kernel shell, Strength characteristic, Cement.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6711
Author(s):  
Paul Oluwaseun Awoyera ◽  
Tobechukwu Austin Nworgu ◽  
Balaji Shanmugam ◽  
Krishna Prakash Arunachalam ◽  
Iman Mansouri ◽  
...  

Corrosion creates a significant degradation mechanism in reinforced concrete (RC) structures, which would require a high cost of maintenance and repair in affected buildings. However, as the cost of repairing corrosion-damaged structures is high, it is therefore pertinent to develop alternative eco-friendly and sustainable methods. In this study, structural retrofitting of corroded reinforced concrete beams was performed using bamboo fiber laminate. Three reinforced normal weight concrete beams were produced, two of which were exposed to laboratory simulated corrosion medium, and the remaining one sample served as control. Upon completion of the corrosion cycle, one of the two corroded beams was retrofitted externally with a prefabricated bamboo fiber laminate by bonding the laminate to the beam surface with the aid of an epoxy resin. The three beams were subjected to loading on a four-point ultimate testing machine, and the loads with corresponding deflections were recorded through the entire load cycle of the beams. Finally, the mass loss of embedded steel reinforcements was determined to measure the effect of corrosion on the beams and the steel. The result showed that corroded beams strengthened with bamboo laminates increase the bearing capacity. Using a single bamboo laminate in the tensile region of the corroded beam increased the ultimate load capacity of the beam up to 21.1% than the corroded beam without retrofit. It was demonstrated in this study that the use of bamboo fiber polymer for strengthening destressed RC beams is a more sustainable approach than the conventional synthetic fibers.


2019 ◽  
Vol 8 (2) ◽  
pp. 279
Author(s):  
Lekan Makanju Olanitori ◽  
Jeremiah Ibukun Okusami

The focus of this research is to investigate the effect of shear reinforcement on flexural capacities of reinforced Normal Weight Concrete (NWC) and Palm Kernel Shell Concrete (PKSC) beams. Ten beams were cast: five from PKSC and five from NWC. The beams were with shear reinforcement spacing of 50 mm, 100 mm, 150 mm, 200 mm and without shear reinforcement respectively. The beams were loaded with a point load at beam centre, and the results showed that the flexural capacity of the beams decreases as the spacing of the shear reinforcements increases. The ultimate loads of PKSC beams were lesser than that of NWC beams by 9.0%, 7.1%, 14.5%, 21 and 26.8% for shear reinforcement spacing of 50 mm, 100 mm, 150 mm, 200 mm and for beam without shear reinforcements respectively. The deflections of the PKSC beams were greater than that of the NWC, hence the PKSC beams had more plastic rotation capacity than the NWC beams. The study shows that reinforced concrete beams produced from 20% partial replacement of crushed aggregate by PKS have the potential of being used for structural purposes in low cost buildings. Keywords: Palm Kernel Shell Concrete, Normal weight concrete, Palm kernel shell, Deflection, Shear reinforcement.


Sign in / Sign up

Export Citation Format

Share Document