scholarly journals Structural Retrofitting of Corroded Reinforced Concrete Beams Using Bamboo Fiber Laminate

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6711
Author(s):  
Paul Oluwaseun Awoyera ◽  
Tobechukwu Austin Nworgu ◽  
Balaji Shanmugam ◽  
Krishna Prakash Arunachalam ◽  
Iman Mansouri ◽  
...  

Corrosion creates a significant degradation mechanism in reinforced concrete (RC) structures, which would require a high cost of maintenance and repair in affected buildings. However, as the cost of repairing corrosion-damaged structures is high, it is therefore pertinent to develop alternative eco-friendly and sustainable methods. In this study, structural retrofitting of corroded reinforced concrete beams was performed using bamboo fiber laminate. Three reinforced normal weight concrete beams were produced, two of which were exposed to laboratory simulated corrosion medium, and the remaining one sample served as control. Upon completion of the corrosion cycle, one of the two corroded beams was retrofitted externally with a prefabricated bamboo fiber laminate by bonding the laminate to the beam surface with the aid of an epoxy resin. The three beams were subjected to loading on a four-point ultimate testing machine, and the loads with corresponding deflections were recorded through the entire load cycle of the beams. Finally, the mass loss of embedded steel reinforcements was determined to measure the effect of corrosion on the beams and the steel. The result showed that corroded beams strengthened with bamboo laminates increase the bearing capacity. Using a single bamboo laminate in the tensile region of the corroded beam increased the ultimate load capacity of the beam up to 21.1% than the corroded beam without retrofit. It was demonstrated in this study that the use of bamboo fiber polymer for strengthening destressed RC beams is a more sustainable approach than the conventional synthetic fibers.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3321
Author(s):  
Hyunjin Ju ◽  
Meirzhan Yerzhanov ◽  
Alina Serik ◽  
Deuckhang Lee ◽  
Jong R. Kim

The consumption of structural concrete in the construction industry is rapidly growing, and concrete will remain the main construction material for increasing urbanization all over the world in the near future. Meanwhile, construction and demolition waste from concrete structures is also leading to a significant environmental problem. Therefore, a proper sustainable solution is needed to address this environmental concern. One of the solutions can be using recycled coarse aggregates (RCA) in reinforced concrete (RC) structures. Extensive research has been conducted in this area in recent years. However, the usage of RCA concrete in the industry is still limited due to the absence of structural regulations appropriate to the RCA concrete. This study addresses a safety margin of RCA concrete beams in terms of shear capacity which is comparable to natural coarse aggregates (NCA) concrete beams. To this end, a database for reinforced concrete beams made of recycled coarse aggregates with and without shear reinforcement was established, collecting the shear specimens available from various works in the existing literature. The database was used to statistically identify the strength margin between RCA and NCA concrete beams and to calculate its safety margin based on reliability analysis. Moreover, a comparability study of RCA beams was conducted with its control specimens and with a database for conventional RC beams.


Author(s):  
Elsayed Ismail ◽  
Mohamed S. Issa ◽  
Khaled Elbadry

Abstract Background A series of nonlinear finite element (FE) analyses was performed to evaluate the different design approaches available in the literature for design of reinforced concrete deep beam with large opening. Three finite element models were developed and analyzed using the computer software ATENA. The three FE models of the deep beams were made for details based on three different design approaches: (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978), (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006), and Strut and Tie method (STM) as per ACI 318-14 (ACI318 Committee, Building Code Requirements for Structural Concrete (ACI318-14), 2014). Results from the FE analyses were compared with the three approaches to evaluate the effect of different reinforcement details on the structural behavior of transfer deep beam with large opening. Results The service load deflection is the same for the three models. The stiffnesses of the designs of (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and STM reduce at a load higher than the ultimate design load while the (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) reduces stiffness at a load close to the ultimate design load. The deep beam designed according to (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) model starts cracking at load higher than the beam designed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) method. The deep beam detailed according to (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) and (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) failed due to extensive shear cracks. The specimen detailed according to STM restores its capacity after initial failure. The three models satisfy the deflection limit. Conclusion It is found that the three design approaches give sufficient ultimate load capacity. The amount of reinforcement given by both (Mansur, M. A., Design of reinforced concrete beams with web openings, 2006) and (Kong, F.K. and Sharp, G.R., Magazine of Concrete Res_30:89-95, 1978) is the same. The reinforcement used by the STM method is higher than the other two methods. Additional reinforcement is needed to limit the crack widths. (Mansur, M. A., Design of reinforced concrete beams with web openings, (2006)) method gives lesser steel reinforcement requirement and higher failure load compared to the other two methods.


2020 ◽  
Vol 857 ◽  
pp. 162-168
Author(s):  
Haidar Abdul Wahid Khalaf ◽  
Amer Farouk Izzet

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and 400 mm, respectively were fabricated and tested as simply supported beams under one incremental concentrated load at mid-span until failure. The design parameters were the configuration and size of openings. Three main groups categorized experimental beams comprise the same area of openings and steel reinforcement details but differ in configurations. Three different shapes of openings were considered, mainly, rectangular, parallelogram, and circular. The experimental results indicate that, the beams with circular openings more efficient than the other configurations in ultimate load capacity and beams stiffness whereas, the beams with parallelogram openings were better than the beams with rectangular openings. Commonly, it was observed that the reduction in ultimate load capacity, for beams of group I, II, and III compared to the reference solid beam ranged between (75 to 93%), (65 to 93%), and (70 to 79%) respectively.


2011 ◽  
Vol 94-96 ◽  
pp. 1523-1526
Author(s):  
Shi Bin Li ◽  
Hong Wei Tang ◽  
Xin Wang

Reinforced concrete (RC) structures are widely used in civil engineering for their merits. A good-quality concrete provides a highly alkaline environment that forms a passive film on reinforcement surface, preventing steel bars from corroding. Due to chloride attack or concrete carbonization, corrosion of embedded reinforcement in concrete members is common for RC structures. Much importance should be attached to the fatigue of corroded concrete bridges because they bear not only static loads but also alternate loads. Followed along with the aging of bridge structures, the increase of traffic volumes, the augment of vehicle loads as well as the deterioration of service environment, many corroded concrete bridges are urgently needed security appraisal and residual fatigue life forecast. Fatigue of corroded RC beams is a key problem for the existing corrosion-damaged concrete bridges. But the interrelated research was little. Based on the most new study information, the production on fatigue of corroded concrete beams was listed and analyzed, and the problems on fatigue of corroded concrete beams were indicated.


2019 ◽  
Vol 8 (2S3) ◽  
pp. 1334-1338

In building construction, post-tensioning allows longer clear spans, thinner slabs than the reinforced concrete beams. This paper presents a theoretical investigation on the behavior of existing reinforced concrete beams strengthened with post-tensioning cable(s) for increasing their load capacity. The proposed post-tensioning technique consists of stressing cable passing through a structural beam element starting from the top/bottom side and traversing the beam to the bottom/top side and then return back to the original side. A theoretical parametric study is conducted to study the effect of post-tensioning parameters on the internal stresses to optimize the design parameters. An excel spread sheet program was developed to calculate the internal straining actions at critical sections of the beam. A parametric study including the cable length, inclination angle of the cable and pre-stressing force magnitude was performed by using this program. This parametric study, led to well-defined guidelines for the proper use of the strengthening of beams by pre-stressing cables with adequate geometrical conditions of the cables


2012 ◽  
Vol 5 (3) ◽  
pp. 343-361
Author(s):  
M. R. Garcez ◽  
G. L. C. P. Silva Filho ◽  
Urs Meier

Different FPR post-strengthening techniques have been developed and applied in existing structures aiming to increase their load capacity. Most of the FRP systems used nowadays consist of carbon fibers embedded in epoxy matrices (CFRP). Regardless of the advantages and the good results shown by the CFRP post-strengthen technique, experimental studies show that, in most cases, the failure of post-strengthened structures is premature. Aiming to better use the tensile strength of the carbon fiber strips used as post-strengthening material, the application of prestressed CFRP strips started to be investigated. The main purpose of this paper is to analyze the effects of the composite prestressing in the performance of the CFRP post strengthening technique. The experimental program was based on flexural tests on post-strengthened reinforced concrete beams subjected to static - part 1 and cyclic - part 2 loading. Experimental results allowed the analysis of the quality and shortcomings of post-strengthen system studied, which resulted in valuable considerations about the analyzed post-strengthened beams.


Author(s):  
Amr H. Badawy ◽  
Ahmed Hassan ◽  
Hala El-Kady ◽  
L.M. Abd-El Hafez

The behavior of unbounded post tension and reinforced concrete beams under elevated temperature was presented. The experimental work was consisted of two major phases. In the first phase, the objective was studying the mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams respectively were studied. In the second phase, the residual mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams under elevated 400oC, for 120 minutes durations. The failure mechanisms, ultimate load capacity, and deflection at critical sections were monitored. The numerical prediction of the flexural behavior of the tested specimens is presented in this paper. This includes a comparison between the numerical and experimental test results according to ANSYS models. The results indicate that the prestressed beam with steel addition and reinforced concrete beams had higher resistance to beams under elevated 400oC than that of prestressed concrete beam in terms of ultimate capacity. It is also shown that the reinforced concrete beams have higher resistance to beams under elevated temperature than that of prestressed beam, prestressed beam with steel addition.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 389 ◽  
Author(s):  
Beata Zima ◽  
Rafał Kędra

The following paper presents the results of the theoretical and experimental analysis of the influence of debonding size on guided wave propagation in reinforced concrete beams. The main aim of the paper is a development of a novel, baseline-free method for determining the total area of debonding between steel rebar embedded in a concrete cover on the basis of the average wave velocity or the time of flight. The correctness of the developed relationships was verified during the experimental tests, which included propagation of guided waves in concrete beams with the varying debonding size, shape and location. The analysis of the collected results proved that guided waves can be efficiently used not only in the debonding detection, but also in an exact determining of its total area, which is extremely important in the context of the nondestructive assessment of the load capacity of the reinforced concrete structures. The undeniable advantage of the proposed method is that there are no requirements for any baseline signals collected for an undamaged structure. The paper comprises of the detailed step by step algorithm description and a discussion of both the advantages and disadvantages.


Sign in / Sign up

Export Citation Format

Share Document