scholarly journals Monitoring and numerical simulation analysis of corrugated steel support in weak surrounding rock mountain tunnels

Author(s):  
Wentong Liu ◽  
Xiaoming Wang ◽  
He Jiang ◽  
Wenqi Ding ◽  
Qingzhao Zhang
2014 ◽  
Vol 953-954 ◽  
pp. 1638-1642
Author(s):  
Ai Qing Liu ◽  
Jian Zhang ◽  
Peng Cheng ◽  
Yu Hai Zhang

Prestress is a key parameter in bolting, while the cohesive force of layers in the compound roof strata is low and prone to separation, causing the prestress proliferation very poor. With the method of numerical simulation analysis,the location of separation in compound roof to affect the performance of bolting support was researched. It is concluded the roof separation in the edge of anchorage zone, the prestress field superpose, but is away from the deep surrounding rock and shows poor stability,however the role of cable can make up for the defect of rockbolts support. It has been found the highly prestressed strength bolting system adapts to the compound roof.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Enze Zhen ◽  
Yubing Gao ◽  
Yajun Wang ◽  
Siming Wang

Gob-side entry retaining is an environmentally friendly nonpillar mining technology with high efficiency and safety. With the continuous exploration of the gob-side entry retained by filling (GERF) with roadside supports, the GERF has enabled nonpillar mining. However, dense roadside supports or filled artificial pillars become subject to the pressure of roof pressure instead of coal pillars, which causes problems. Recently, an original innovative gob-side entry retaining technology by roof cutting and pressure relief (RCPR) was developed and extensively implemented in China’s coal production. The gob-side entry formed by different retaining methods has exhibited some differences in the strata behaviors and the results of retained roadways. Via industrial case and numerical simulation, this study explored the influence of entry retaining methods on the results of the entry retained. The results indicate that the total deformation of the surrounding rock of the GERF is larger and more severe; the convergence between the roof and floor and the entry sides displacement is 885 mm and 216 mm, respectively; the hydraulic support pressure near the retained entry is larger; and the peak value is 38.7 MPa. The deformation of the surrounding rock by RCPR is relatively small; the convergence between the roof and the floor and the entry sides displacement is 351 mm and 166 mm, respectively; the hydraulic support pressure near the retained entry is weakened to a certain extent; the peak value is 32.2 MPa; and the peak pressure is reduced by 16.8% compared with the GERF. A numerical simulation analysis reveals the following findings: RCPR changes the surrounding rock structure of a gob-side entry, optimizes the surrounding rock stress environment, and belongs to active pressure-relief entry retaining; the GERF does not adjust the surrounding rock structure of a gob-side entry and belongs to passive pressure-resistance entry retaining; and the surrounding rock of a gob-side entry is significantly affected by pressure. These two methods of gob-side entry retaining have different effects on the surrounding rock of the entry retained. This study can contribute to an exploration of the strata behaviors and the results of a retained roadway by the GERF or RCPR method.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 606 ◽  
Author(s):  
Qinghai Li ◽  
Jingkai Li ◽  
Jinpeng Zhang ◽  
Changxiang Wang ◽  
Kai Fang ◽  
...  

The surrounding rock control is a tough issue in the roadway with the swelling soft rock. The steel set is an important material for the control of swelling soft rock roadways. However, traditional steel sets failed to prevent the expansive pressure of the soft rock. Based on traditional steel sets, this paper developed a new steel set through both theoretical analysis and numerical simulation. The results showed that the new steel set was the set with the roof beam 1000 mm from the top of the set and the floor beam 400 mm from the bottom end of the set. The maximum deformations of the roof-floor and two sides of the ventilation roadway controlled by the best-improved set at the observation point were 147 mm and 108 mm, respectively. So, the best-improved set can effectively control the surrounding rock of the ventilation roadway. This provides an effective method for the surrounding rock control in extremely soft rock roadways.


2013 ◽  
Vol 807-809 ◽  
pp. 2356-2360 ◽  
Author(s):  
Guang Yi Sun ◽  
Xiao Luo

The application of FLAC2D software long ditch coal mine extraction tunnel without support boltgrouting. Anchor when the anchor rope supporting and strengthening supporting state ofroadwaywere simulated and analyzed the change of roadway surrounding rock under differentsupport forms. Demonstrated the possibility that the current anchor cable anchor supporting andanalysis under the condition of the coal wall broken grouting bolt is the necessity of reinforcement.


2012 ◽  
Vol 619 ◽  
pp. 231-238
Author(s):  
Mei Chang Zhang ◽  
Peng Cheng Fei ◽  
De Long Zou

The bolt support is important to ensure the stability of surrounding rock. Of Nan Yangpo mines as the research background. The application of numerical simulation software FLAC3D mine deep Bolt bolt support after the surrounding rock deformation law of the numerical simulation, Comparison and analysis of rock displacement and plastic zone under the support program changes. The results show that, The third bolt support nursing program, Significantly improve the strength and load carrying capacity of the surrounding rock, Effectively control the damage of the deep tunnel deformation that can control the roof of 4101 the return airway and two to help the stability.


2011 ◽  
Vol 243-249 ◽  
pp. 3364-3369 ◽  
Author(s):  
Chang Qun Zuo ◽  
Jian Ping Chen ◽  
Hui Liu

The key problem of supporting structure design is the load calculation in tunnels with shallow buried depth and unsymmetrical pressure in the situation of weak surrounding rock. The results of simplified calculation method recommended by Code for Design of Road Tunnel differ from the practical situations to a certain extent because of the neglect of load calculation range that makes the results less than the practical values, which will bring about potential safety hazard. Based on the calculation method of the Code, modified computational formulas of vertical load of internal and external sides and horizontal load are put forward based on new assumption conditions and load simplified model. The modified formulas were adopted in the calculation of the entrance of Huo-Cheling Mountain Tunnel with unsymmetrical pressure, and the results were compared with those obtained by the method of the Code and numerical simulation. The comparison show that the results of modified formula coincided with those of numerical simulation, while the values calculated by the Code were smaller.


2012 ◽  
Vol 170-173 ◽  
pp. 1410-1413
Author(s):  
Guang Xiang Mao ◽  
Yuan You Xia

During the tunnel excavation construction, the internal stress of surrounding rock surface will release to zero immediately, and the displacement of the surrounding rock surface increases slowly because of the delayed strain of the rock material. Set the stress of the surface is easier then set the strain of the surface while numerical simulation of excavation in FLAC3D and other software. Based on the rock mechanics and excavation process, combined with on-site monitoring of the displacement data, use the FLAC3D software to establish study examples, use Genetic Algorithm optimize the weight and bias of the neural network, analyze the release rate of stress of surrounding rock under a reasonable construction time. It can provide the reference data for the tunnel design, construction and the numerical simulation analysis during construction under the similar conditions.


Sign in / Sign up

Export Citation Format

Share Document