coal wall
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 46)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yingjie Liu ◽  
Haijun Wang ◽  
Qingjie Qi ◽  
Anhu Wang ◽  
Youxin Zhao

The objective of this study was to reveal the law of overburden movement and stress evolution during the mining of super-high fully mechanized mining faces. Based on the 12401 fully mechanized mining face of Shangwan Coal Mine in Shendong, this study conducted research and analysis using the methods of similarity simulation experiment, numerical simulation, and field measurement. The results showed that the maximum and minimum principal stresses in the coal seam in front of the working face are concentrated with the advance of the working face. The degree of stress concentration increases with the increase in the advancing range, and the concentration degree of the maximum principal stress and the change gradient is greater than that of the minimum principal stress. But the range of the peak lead coal wall is lower than that of the minimum principal stress of the peak lead coal wall. The phenomenon of stress recovery exists in the goaf. With the increase in the advancing range of the working face, the degree of stress recovery gradually increases, and the degree of maximum principal stress recovery is higher than that of the minimum principal stress recovery. The large fractures observed near the working face are closely related to the underground pressure, relatively large fractures appear on the surface, and the fractures become narrower near the two pathways. Only caving and fissure zones exist in the thin bedrock overburden, and the bending subsidence zone changes with the bedrock thickness. The support strength of the hydraulic support should not be less than 1.47 MPa. This research on the overburden movement and stress evolution law of a super-high fully mechanized mining face can provide theoretical guidance for the exploitation and utilization of extrathick coal seam resources. It has broad engineering prospects.


ACS Omega ◽  
2021 ◽  
Author(s):  
Zhizhong Xing ◽  
Shuanfeng Zhao ◽  
Wei Guo ◽  
Xiaojun Guo ◽  
Shenquan Wang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Weibin Guo ◽  
Shengwei Zhang ◽  
Yuhui Li

Coal wall spalling is regarded as a key technical problem influencing safe and efficient mining of large-mining-height working faces while the distribution of abutment pressure within the limit equilibrium zone (LEZ) influences coal wall spalling within a large-mining-height working face. This research attempted to explore the distribution characteristics of abutment pressure within the LEZ in a large-mining-height working face. For this purpose, the influences of the orientation of joints on mechanical characteristics of coal with joints and on the distribution of abutment pressure within the LEZ in the large-mining-height working face were analysed by theoretical analysis and numerical simulation. Research results show that the damage variable of coal with joints first rises, then decreases, and finally increases with increasing dip angle of the joints; as the azimuth of the joints increases, the damage variable first declines, then increases; the damage variable gradually declines with increasing joint spacing; an increase in the dip angle of joints corresponds to first reduction, then growth, and a final decrease of the abutment pressure at the same position in front of the coal walls; on certain conditions, the abutment pressure at the same position within the LEZ first rises, then declines as the azimuth of joints increases; with the growth of the joint spacing, the abutment pressure at the same position within the LEZ rises. The dip angle and azimuth of joints marginally affect the abutment pressure within the LEZ.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kang Wang ◽  
Xinglong Huang ◽  
Haibo Li ◽  
Feng Zhang ◽  
Jiazhen Li ◽  
...  

The evolution process of the surrounding rock failure mechanism is studied because of spalling and roof fall accidents at the top corner of longwall top coal caving faces affected by mining and the difficulty of moving the advanced end support. Methods are proposed to improve the stability of surrounding rocks at the top corner of the end including cutting at the top corner of the end, reinforcing the anchor cable, changing the stress distribution of surrounding rocks at the top corner of the end, and transferring the stress concentration area of surrounding rocks to the deeper rock. Field observations of the surrounding rocks at the top corner of the 15107 fully mechanized caving face show that the stress value of the surrounding rocks at the corner between the roof of the return airway and the coal wall of the working face is 28.9 MPa when the surrounding rocks are in a stable state without mining. The stress value of surrounding rocks at the top corner of the end is 32.3 MPa when it is affected by mining, which results in spalling and roof fall. The surrounding rocks are in a stable state when the maximum stress of the surrounding rocks at the top corner of the reinforced anchor cable’s back-end is 26.1 MPa. The results show that cutting of the surrounding rocks at the top corner of the end and the reinforcement of the anchor cable can avoid the spalling and roof fall when the top corner of the end is affected by mining and can ensure that the end support advances and working face moves forward.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jiaxin Dang ◽  
Min Tu ◽  
Xiangyang Zhang ◽  
Qingwei Bu

Protective seam mining is an effective gas pressure relief method in deep mining. Effective theoretical calculation methods in the current studies on the prediction of pressure relief protection effect of interbed coal and rock masses and their distribution laws are lacking. Thus, the evaluation and research with respect to pressure relief effect in protective seam mining relatively lag behind. This situation restricts the engineering feasibility evaluation and decision making in the protective seam mining. Therefore, the influence of upper protective seam mining on the pressure relief protection effect of coal and rock mass between underlying beds was investigated in this study. On the basis of an analysis of concrete engineering projects, a mechanical model was constructed for the pressure relief protection effect of upper protective seam mining on the coal and rock mass between underlying beds. The distribution equation of pressure relief expansion ratio in the underlying protected seam was also derived. The influence laws of main influencing factors on the pressure relief protection effect of the protected seam were revealed as well. In the end, the pressure relief effect was analyzed and verified for the protected seam before and after mining through numerical simulation and similarity simulation test. The pressure relief effect of upper protective seam mining on the coal and rock mass between underlying beds and the distribution characteristics were deeply explored in this study, which could provide a theoretical reference for the decision making in the gas extraction engineering design and pre-evaluation of extraction effect. Results show that the effective pressure relief zone (expansion rate>0.3%) of the protected seam beneath the goaf is located within the range of approximately 40 m from the coal wall to the rear part. It also presents an approximate “Λ-shaped distribution characteristic,” that is, it experiences migration and evolution with the advancement in the working face. Moreover, the peak pressure relief lags behind the coal wall on the working face by nearly 10–20 m. In the numerical simulation, the expansion ratio in the goaf also presents an approximate “Λ-shaped distribution.” Its effective pressure relief zone is the 50 m range from the coal wall to the rear part of the goaf, and the peak value lags behind the coal wall by around 15 m. The theoretical results and numerical simulation results are basically consistent with the physical experiment results. The expansion rates are 1.25%, 1.268%, and 1.32%, respectively. The elastic modulus E of coal seam and interbed spacing H are the main influencing factors of the swelling deformation and are negatively correlated with the expansion ratio. In the actual mining process, E and H of the protected layer can be measured to infer the expansion deformation of the protected layer.


2021 ◽  
Vol 861 (5) ◽  
pp. 052054
Author(s):  
Maolin Tian ◽  
Lijun Han ◽  
Qingbin Meng ◽  
Xuxu Yang ◽  
Qiang Feng ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 10652
Author(s):  
Chen Wang ◽  
Cheng Zhu ◽  
Yong Yuan ◽  
Zhongshun Chen ◽  
Wenmiao Wang

The phenomenon of dynamic pressure in the panel under shallowly buried gobs is obvious, resulting in limited and challenging support type selection. In this paper, theoretical analysis, numerical simulation and field measurement were combined to study the reasonable working resistance of the support in panels under shallowly buried gobs. First, the definition of the equivalent main key stratum (EMKS) was proposed. Then, a method of identifying the structure of the EMKS and broken key stratum blocks was given. The roof structure of the panel under a shallowly buried gob (PSBG) during strong periodic weighting could be divided into 12 types. Mechanical models of the roof structure were established, and the method to calculate the working resistance of the support was given. The Bulianta coal mine and Fengjiata coal mine in the Yushenfu Mining Area were taken as research objects. Based on the measured working resistance curve of the support, the structural morphology of key stratum blocks during strong periodic weighting was distinguished. On this basis, the working resistance of the support was calculated. Finally, FLAC2D numerical software was used to test the working resistance of the support. Based on the subsidence of the roof, horizontal displacement of the coal wall and the development range of the plastic zone in the surrounding rock, the working resistance of the support and adaptability of the surrounding rock control were verified and evaluated. The results show that it is reasonable to calculate the working resistance of the support based on the roof structure during strong periodic weighting. The research results can provide a reference for the scientific and rational selection of the support in a PSBG.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shoulong Ma

In order to realize the safe and efficient mining of the short-distance isolated island working face under the deep goaf area, the 120502 isolated island working face of Liuzhuang Mine was taken as the engineering background. The method of combining numerical simulation and field measurement were used comprehensively to systematically simulate and study the spatial evolution of the stress field, plastic strain field, and fracture field of coal rock during the mining process. The leading support pressure and the vertical displacement of the roof in the overlapping section and noncoinciding section of the isolated working face and the goaf above were measured on site. The results are that the peak value of the advanced support pressure of the overlap section and the nonoverlapping section is 10 m before the coal wall of the working face; the advanced support pressure of the nonoverlapping section is 33.3 MPa, and the vertical displacement of the roof is 300 mm. The advanced support pressure and the vertical displacement of the roof in the noncoincidence section were significantly higher than those in the coincidence section of 18.2 MPa and 210 mm. The results are consistent with those predicted by numerical simulation. This provides theoretical support for the safe mining of the 120502 isolated island working face in Liuzhuang Mine and, at the same time, provides a reference for the study of similar working faces in other domestic mining areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Haifeng Zhou ◽  
Qingxiang Huang ◽  
Yingjie Liu ◽  
Yanpeng He

To study the problems of dynamic load pressure and frame pressure caused by the concentration of stress by coal extraction pillars during the mechanized short-distance mining of goaves in shallow coal seams, a frame pressure accident, in the Shendong Shigetai Coal Mine, during the overlying of a fully mechanized mining goaf is taken as a research example. By applying the field measurement, theoretical analysis, and numerical simulation methods, we throughly analysed the working face coal pillar, got the regular pattern of fully mechanized overburden pressure, summarized a pillar of fully mechanized working face in the overburden strata movement regularity and development characteristics, analyzed the reason and mechanism of broken coal pillar, and put forward the corresponding prevention measures and management method. The results show that when the fully mechanized mining face enters the goaf by about 3 m, the pressure arches of the lower coal face and the upper goaf arising from the extracted coal overlap. When the vertical stress is greater than the supporting force of the hydraulic support and the coal wall, a roof ejection accident may occur.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haijun Wang ◽  
Yingjie Liu ◽  
Yuesong Tang ◽  
Hao Gong ◽  
Guoliang Xu

The capabilities of mining equipment and technology in China have been improving rapidly in recent years. Correspondingly, in the western part of the country, the mining heights of longwall faces in shallow-buried coal seams have shown an increasing trend, resulting in enhanced mining efficiency. However, the problems associated with the possible failure of the coal wall then increase and remain a serious difficulty, restricting safe and efficient mining operations. In the present study, the 12401 longwall face of the Shangwan Coal Mine, Inner Mongolia, China, with a mining height of 8.8 m, is taken as an example to study the mechanisms underlying failure phenomena of coal walls and their control methods. Our results show that the failure region inward of the longwall face is small in shallow-buried coal seams, and the damage degree of the exposed coal wall is low. The medium and higher sections of the coal wall display a dynamic failure mode, while the broken coal blocks, given their initial speed, threaten the safety of coal miners. A mechanical model was developed, from which the conditions for tensile failure and structural instability are deduced. Horizontal displacement in the lower part of the coal wall is small, where no tensile stress emerges. On the other hand, in the intermediate and higher parts of the coal wall, horizontal displacement is relatively large. In addition, tensile stress increases first with increasing distance from the floor and then decreases to zero. Experiments using physical models representing different mining heights have been carried out and showed that the horizontal displacement increases from 6 to 12 mm and load-bearing capacity decreases from 20 to 7.9 kN when the coal wall increases in height from 3 to 9 m. Furthermore, failure depth and failure height show an increasing trend. It is therefore proposed that a large initial support force, large maximum support force, large support stiffness, and large support height of a coal wall-protecting guard are required for the improved stability of high coal walls, which operate well in the Shangwan coal mine.


Sign in / Sign up

Export Citation Format

Share Document