rock structure
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 109)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Qihang Mei ◽  
Bin Yang ◽  
Ji Chen ◽  
Jingyi Zhao ◽  
Xin Hou ◽  
...  

The temperature difference at the top and bottom of the crushed-rock layer can drive the heat convection inside. Based on this mechanism, crushed-rock structures with different forms are widely used in the construction and maintenance of the Qinghai-Tibet Railway as cooling measures in permafrost regions. To explore the stability of different forms of crushed-rock structure embankments under climate warming, the temperature and deformation data of a U-shaped crushed-rock embankment (UCRE) and a crushed-rock revetment embankment (CRRE) are analysed. The variations in temperature indicate that permafrost beneath the natural sites and embankments is degrading but at different rates. The thermal regime of ground under the natural site is only affected by climate warming, while that under embankment is also affected by embankment construction and the cooling effect of the crushed-rock structure. These factors make shallow permafrost degradation beneath the embankments slower than that beneath the natural sites and deep permafrost degradation faster than that beneath the natural sites. Moreover, the convection occurring in the crushed-rock base layer during the cold season makes the degradation of permafrost beneath the UCRE slower than that in the CRRE. The faster degradation of permafrost causes the accumulated deformation of the CRRE to be far greater than that of the UCRE, which may exceed the allowable value of the design code. The analysis shows that the stability of the UCRE meets the engineering requirements and the CRRE needs to be strengthened in warm and ice-rich permafrost regions under climate warming.


Author(s):  
Lei Fan ◽  
Meiwan Yu ◽  
Aiqing Wu ◽  
Yihu Zhang

Interactions between water and rocks are the main factors affecting the deformation of rock masses on sloped banks by reservoir impoundment. The technology used in laboratory tests of water-rock interaction mechanisms cannot simulate the coupling of water, the rock structure and the initial stress environment. In this work, we develop an in situ hydromechanical true triaxial rock compression tester and apply it to investigate the coupling response of reservoir bank rocks to changing groundwater levels. The tester is composed of a sealed chamber, loader, reactor, and device for measuring deformation, which are all capable of withstanding high water pressures, and a high-precision servo controller. The maximum axial load, lateral load and water pressure are 12 000 kN, 3 000 kN and 3 MPa, respectively. The dimensions of the test specimens are 310 mm×310 mm×620 mm. The test specimens are grey-black basalts with well-developed cracks from the Xiluodu reservoir area. The results show that increasing water pressure promotes axial compression and lateral expansion, while decreasing water pressure causes axial expansion and lateral compression. A water pressure coefficient, K, is introduced as a measure of the hydromechanical coupling effect (expansion or compression) with changing groundwater level. A mechanical tester can be used to perform accurate field tests of the response of wet rocks to hydromechanical coupling. The test results provide new information about the deformation patterns of rock slopes in areas surrounding high dams and reservoirs.Thematic collection: This article is part of the Role of water in destabilizing slopes collection available at: https://www.lyellcollection.org/cc/Role-of-water-in-destabilizing-slopes


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Jack Lee

New findings contrast with a prevailing hypothesis for low seismic velocity in subduction zones.


2021 ◽  
Vol 5 (2) ◽  
pp. 539-543
Author(s):  
Reza Firdaus ◽  
Siska Oktaviyani ◽  
Putri Hardianti ◽  
Tri Kusmita ◽  
Anisa Indriawati

Abstract   Geothermal manifestations on Bangka Island are found in the villages of Terak, Pemali, Sungailiat/Pelawan, Dendang, Permis, and Nyelanding. The manifestation of hot water in Terak Village, Central Bangka Regency is in the form of 3 hot springs with a surface temperature of 55ᵒC this research is to be carried focus on the structure of the subsurface rock layers using the geophysical method, namely the gravity method. The data used are topography and Free Air Anomaly. The data processing is in the form of Bouguer Correction and Terrain Correction to obtain the Complete Bouguer Anomaly (CBA) value. Then the CBA value is separated from regional anomalies and residual anomalies using the upward continuation method, as well as 2D modeling interpretation (forward modeling). From the research results, it is known that the subsurface rock structure of the non-volcanic geothermal system in Terak Village in the form of sandstone (2.28 – 2.49 gr/cm3) at a depth of 0 – 1.44 km is estimated as caprock, granite (2.77 – 2.78 gr/cm3) at a depth of 0 – 1.8 km is estimated as reservoir rock, and diorite rock (2.87 – 2.99 gr/ cm3) at a depth of 0 – 2 km is estimated as basement rock.    


2021 ◽  
Vol 9 ◽  
Author(s):  
Qilu Xu ◽  
Xianzheng Zhao ◽  
Xiugang Pu ◽  
Wenzhong Han ◽  
Zhannan Shi ◽  
...  

The significance of lacustrine shale oil has gradually become prominent. Lacustrine shale has complex lithologies, and their reservoir properties are quite various. The multi-scale pore structure of shale controls the law of shale oil enrichment. Typical lacustrine shale developed in the Member 2 of Kongdian Formation in Cangdong sag, Bohai Bay Basin. The lithofacies and multi-scale storage space of this lacustrine shale have been systematically studied. 1. The mineral composition is quite different, and the lithofacies can be summarized into siliceous, carbonate and mixed types. The rock structure can be summarized into laminated, layered, and massive types. 2. The pores are diverse and multi-scale. Interparticle pores contribute the main storage space, especially the interparticle pores of quartz and dolomite. 3. The physical properties of the massive shales is relatively inferior to those of layered and laminatedtypes, and it presents the characteristics of " laminated >layered > massive ". The developed laminae can significantly improve the space and seepage capacity of lacustrine shale. 4. Clay minerals provide the main nano-scale storage space, but they are often filled in pores and reduces the shale brittleness, which have destruction effects.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qin Guangpeng ◽  
Cao Jing ◽  
Wang Chao ◽  
Wu Shuo ◽  
Zhai Minghua

The stratified mining of super thick coal seam is a process of repeated disturbance of the top roof, especially in the lower stratification, the upper complex rock layer has a greater settlement space, resulting in great changes in the strata structure and fissure distribution. The main coal seam thickness of Rujigou Coal Mine exceeds 20 m, due to the high gas content of the coal seam, it is prone to spontaneous combustion, and the stratified mining method is adopted. When a small-size section coal pillar (less than 10 m) is used, the complex rock structure evolution and fissure development characteristics during the stratified mining of shallow buried thick coal seam will directly affect the movement of gas transportation between the working face and the goaf and will directly affect the safety of the working face. Taking Rujigou coal mine as engineering background, this paper analyzes the breaking structure, fracture development, and evolution law of overlying strata in different layers and different sections of coal seam when the buried depth is shallow, and the extra-thick coal seam is stratified mining. The results show that in the process of stratified mining, the overlying strata break, in addition to the whole trapezoidal failure structure, will also form a local F type fracture structure, and with the stratified downward mining, the F type fracture structure will continue to move up and disappear until it is compacted. The “V” type and “U” type subsidence characteristics of different strata overburden are presented after mining in stratified working face of extra-thick coal seam, and the subsidence amount is approximately symmetrical distribution along the middle line of goaf. In the mining process of the lower part of the layer, the end broken rock block is easy to slip along the hinge point by the hinged rock beam structure, and the sliding instability occurs. In the process of stratified mining of ultrathick coal seam, the main fissure of overburden is mainly longitudinal fissure, and it is very easy to form through with the upper layer and will finally connect with the surface under the condition of shallow buried depth. The inclined cracks connected with the adjacent goaf are formed above the coal pillar of the section, which becomes the passage of gas migration in the goaf. The research conclusion shows that for the stratified mining of high gas thick coal seam, special attention should be paid to the treatment of the gas on the stratified working face. In addition to the conventional gas treatment measures such as coal seam prepumping, the buried pipe pumping in the mining area can also be adopted, which can effectively reduce the gas concentration of the working surface.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012061
Author(s):  
Aashima Khan ◽  
Shaivya Saxena ◽  
Srishti Baloni ◽  
Mudita Sharma ◽  
Jagadeeshwar Kodavaty

Abstract After the conventional oil recovery system, it was estimated that huge amount of oil reserves is still remaining un-extracted. Because of tremendous demand for oil and established facilities at the oil exploration sites after conventional recovery got significant attention. Since the oil is entrapped in the porous rock structure and is difficult to evacuate, focus was made on tertiary recovery of oils. Many methods have been suggested by various researchers with different techniques to mobilize the entrapped oil in the well. The classification of the techniques will give different methods of recovery. The rheology, surface tension, mobility ratio are the important parameters that were considered during the enhanced recovery. The review that is presented here gives the overall methods for recovery and various materials and important parameters to be considered for the enhanced oil recovery. A new substitute for the sand pack column is suggested to conduct the bench top experimental set up that would ease the work of flooding with alkaline, surfactant and polymers.


2021 ◽  
Author(s):  
Dongdong Chen ◽  
Yiyi Wu ◽  
Shengrong Xie ◽  
Fangfang Guo ◽  
Fulian He ◽  
...  

Abstract Close-distance coal seams are widely distributed in China, and there is a problem of stopping mining in a large number of working faces. Taking Yanzishan mine as the engineering background, the mined-out area and the remaining end-mining coal pillar of No.4 coal seam (upper coal seam) mined in advance caused strong interference to the stopping mining of N316 working face of No.3 coal seam under it. Through field observation, laboratory experiment, and support data collection, the mechanical parameters of coal and rock mass and periodic weighting condition of the working face were mastered, and numerical simulation and similar model experiments were carried out. Three positional relationships between the stopping position of the underlying N316 working face and the upper stopping line were obtained: “externally staggered with the upper stopping line” (ESUL), “overlapped with upper stopping line” (OUL), and “internally staggered with the upper stop line” (ISUL, ISUL-SD for shorter internal staggered distances, ISUL-LD for longer ones). The formation and evolution of the stress arch structure of ESUL → OUL → ISUL-SD → ISUL-LD are obtained from the analysis: ① ESUL: there is a double stress arch structure of goaf side and end-mining coal pillar side in the overburden and stress superposition appears in the middle arch foot (stopping mining place). ② OUL: it evolved into a single arch structure of goaf-solid coal, and the stress at the stop of mining was relatively minimum. ③ ISUL-SD: it is still a single arch structure, and the stress at the stop of mining is still small. ④ ISUL-LD: the double stress arch is regenerated and stress superposition occurs at the front arch foot (stopping mining place). At the same time, the morphological evolution process of stress arch is as follows: “front and back stress arches, superimposed with middle arch foot” → “front arch gradually decreases” → “front arch dies, and two arches merge into single arch” → “single arch gradually increases” → “two arches are regenerated, superimposed with front arch foot”. On-the-spot analysis from the combination of stress and overburden structure: ① ESUL: the stress concentration degree is the highest above the stopping space, and the overburden block in the large-scale caving zone directly acts on the support, which makes the stopping operation difficult. ② OUL: although the stress environment is the best, the overlying key blocks will have hidden dangers of overall rotation or sliding instability. ③ ISUL-SD: the stress environment is good, and the overlying rock can realize the stable structure of the cantilever plate (the internal staggered distance is less than the periodic weighting step), and the mining is stopped at this position to realize the safe and smooth withdrawal of the support. ④ ISUL-LD: it is basically consistent with stopping mining when single-layer coal is used but is limited by the limited length of the end-mining coal pillar. In addition, the self-digging retracement channel is designed to serve the whole retracement process, and the idea of time-sharing partition support for a large cross-section of mining stoppage and its corresponding scheme is put forward according to the retracement process. Through the simulation of prestressed field and field practice, the roof overlying rock structure is stable during the whole retracement period, thus realizing the safe and smooth mining stoppage and retracement of the working face.


Author(s):  
Xinyan Peng ◽  
Guangqi Chen ◽  
Haiying Fu ◽  
Pengcheng Yu ◽  
Yingbin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document