humidity field
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 33 (12) ◽  
pp. 123308
Author(s):  
Gang Zeng ◽  
Lin Chen ◽  
Haizhuan Yuan ◽  
Ayumi Yamamoto ◽  
Shigenao Maruyama

MAUSAM ◽  
2021 ◽  
Vol 48 (3) ◽  
pp. 351-366
Author(s):  
K. PRASAD ◽  
Y.V. RAMA RAO ◽  
SANJIB SEN

ABSTRACT. Results of tropical cyclone track prediction experiments in die Indian seas by a high resolution limited area numerical weather prediction model (1° × 1° lat./long. grid) are presented. As the tropical cyclones form in data sparse regions of tropical oceans, and are, therefore, not well analysed in die initial fields, a scheme has been developed for generation of synthetic observations -based on die empirical structure of tropical cyclones, and their assimilation into the objective analysis, for preparing initial fields for running a forecast model. Experiments on track prediction have beat : conducted for die cyclones forming in the Bay of Bengal and Arabian Sea during the period 1990-95. Forecast errors of the model for 24 hr and 48 hr forecasts have been computed. A sensitivity experiment has been carried out to demonstrate the importance of initial humidity field on forecast model performance. The experiment brings out crucial important of the initial humidity field prescription in accurate track prediction by die forecast model.    


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shihao Cao ◽  
Wang Hui ◽  
Shufang Zhai ◽  
Kui Hu ◽  
Yujing Chen ◽  
...  

Drying-induced cracks are an important issue for bi-block ballastless track system consisting of foundation, precast sleepers, and cast-in-place track slab, which not only significantly affects the comfortableness and safety of rapid transit railway but also reduces the service life of ballastless track. In order to explore its damage mechanism, this work presents an evolution model of relative humidity (RH) in the CRTS I bi-block ballastless track system by considering the actual construction sequence and environmental conditions to simulate the crack propagation induced by nonuniform RH field. Firstly, based on the node coupling technique, a three-step transfer process of RH is designed to separately investigate the influence of the construction sequence on the early humidity field in the foundation, sleepers, and cast-in-place track slab, and then the nonuniform distribution of early humidity field in the ballastless track system is determined. Subsequently, the formation mechanism of shrinkage crack in the system is analyzed, and the crack propagation path is predicted by using the mixed-mode fracture criterion. The results show that the maximum relative humidity gradient (RHG) appears at the interface between the track slab and the sleeper after concreting the cast-in-place track slab, which causes the maximum principal stress due to the drying shrinkage property of concrete materials. When the maximum principal stress exceeds the tensile strength of the interface, an interface crack will be generated and converted to a splayed crack with an initial angle of about 45° at the sleeper corner, which will be further propagated under the action of drying shrinkage deformation and finally forms a transverse through-wall crack in the track slab. The simulated crack propagation path agrees with the observed one at the site well, and thus the results are beneficial to understand the formation mechanism of through-wall crack in the track slab and further guide the construction design of the bi-block ballastless track system.


2021 ◽  
Author(s):  
Patrick Chazette ◽  
Alexandre Baron ◽  
Cyrille Flamant

Abstract. From 23 January to 13 February 2020, twenty ATR-42 scientific flights were conducted in the framework of the EUREC4A field campaign over the tropical Atlantic, off the coast of Barbados (−58°30' W 13°30' N). By means of a side-pointing lidar, these flights allowed to retrieve the optical properties of the aerosols found in the sub-cloud layer and below the trade winds inversion. Two distinct periods with significant aerosol contents were identified in relationship with the so-called trade wind and tropical regimes, respectively. A very strong spatial heterogeneity of the aerosol field has been highlighted at the airborne measurements scale of a few tens of kilometres. This heterogeneity, difficult to capture using spaceborne instruments, can be related to the highly variable relative humidity field and the fractional cloud cover encountered during all the flights.


Author(s):  
Yonghong Liu ◽  
Yongming Xu ◽  
Xiuzhen Han ◽  
Wenjun Shu ◽  
Fuzhong Weng

2021 ◽  
Author(s):  
Jinning Zhang ◽  
Shuihan Wang ◽  
Ruimin Li ◽  
Yi Jin ◽  
Hongqing Zhang ◽  
...  

2020 ◽  
Vol 30 (12) ◽  
pp. 2015-2032
Author(s):  
Guodong Li ◽  
Junhua Zhang ◽  
Parham A. Mirzaei ◽  
Shengyan Ding ◽  
Yapeng Ding ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Jifeng Hou ◽  
◽  
Zhongping Guo ◽  
◽  

The borehole shrinkage of swelling rock in coalmine is a complex problem affected by the combination of multiple fields, such as humidity field and stress field. By establishing the equilibrium equation of swelling rock borehole in coalmine, considering the expansion and softening properties, an elastic-plastic mechanics analysis was carried out, and the plastic zone radius and radial displacement of swelling rock borehole in coalmine were determined under the combination of humidity field and stress field. Taking the floor rock roadway in the 8# coal seam of Songzao Coalmine in Chongqing as an example, the influence laws of water content, ground stress, and water pressure in the hole on the borehole shrinkage were studied. The results show that, with the increase of water content of the surrounding rock, the radius of plastic zone and radial displacement of borehole wall gradually increase. Both the humidity expansion and softening have an important influence on borehole shrinkage in coalmine, and the radial displacement of borehole wall under the combination of swelling and softening is greater than that of only considering expansion or softening. With the increase of ground stress, the radius of plastic zone and radial displacement of borehole wall gradually increase, showing a nonlinear increasing relation. The larger the water pressure in the borehole, the smaller the radius of plastic zone and radial displacement of borehole wall, and properly increasing the water pressure in the borehole can effectively control the borehole shrinkage. The accuracy of theoretical analysis was further r verified by similar model tests. The results can provide a theoretical basis for solving the problem of borehole shrinkage in the swelling rock of coalmine.


Sign in / Sign up

Export Citation Format

Share Document