mine roadway
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 47)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Xiaoyan Zhang ◽  
Qiang Wu ◽  
Yingwang Zhao ◽  
Shouqiang Liu ◽  
Hua Xu

Abstract Water inrush accidents seriously threaten underground mining production, so the accurate prediction of the spreading process of water inrush is essential for the formulation of water-inrush-control plans and rescue schemes. This paper proposes a spatiotemporal model based on pipe-flow theory to simulate the spreading process of water inrush in mine roadway networks. The energy-loss term is added to this model to improve the simulation accuracy in bifurcated roadways, and pumps and water-blocking equipment are considered in controlling the spreading process of water inrush. Through experimental case studies, the simulation results and the function of the energy-loss term are verified. A sensitivity analysis is then carried out to assess the impact of the model parameters. The results show that the model outputs are most sensitive to the roadway length, cross-section width, and energy-loss coefficient. The model exhibited maximal sensitivity to the geometric parameters compared with the hydraulic parameters. Furthermore, the spreading process of a real water inrush in a coal mine in North China is simulated, and the water-inrush-control measures are evaluated. The overall results indicate that the proposed spatiotemporal model accurately predicts the spreading process of water inrush and is thus applicable to large-scale mine roadway networks.


2022 ◽  
Vol 29 (2) ◽  
pp. 149
Author(s):  
Guangdong Yu ◽  
Guoying Meng ◽  
Xuewen Feng ◽  
Binglin Song ◽  
Shuaishuai Shang ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 178
Author(s):  
Nikodem Szlązak ◽  
Marek Korzec ◽  
Kazimierz Piergies

The determination of methane content of coal seams is conducted in hard coal mines in order to assess the state of methane hazard but also to evaluate gas resources in the deposit. In the world’s mining industry, natural gas content in coal determination is usually based on direct methods. It remains the basic method in Poland as well. An important element in the determination procedure is the gas loss that occurs while collecting a sample for testing in underground conditions. In the method developed by the authors, which is a Polish standard, based on taking a sample in the form of drill cuttings, this loss was established at a level of 12%. Among researchers dealing with the methane content of coal, there are doubts related to the procedures adopted for coal sampling and the time which passes from taking a sample to enclosing it in a sealed container. Therefore, the studies were designed to evaluate the degree of degassing of the sample taken in the form of drill cuttings according to the standard procedure and in the form of the drill core from a coal mine roadway. The results show that the determinations made for the core coincide with the determinations made for the drill cutting samples, with the loss of gas taken into account.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 242
Author(s):  
Guangdong Yu ◽  
Qian Hu ◽  
Xuewen Feng ◽  
Guoying Meng ◽  
Yifan Nie

In this paper, to identify the roof unconfined compressive strength (UCS) in the process of coal mine roadway support in real-time and optimize the real-time drilling speed while drilling, this paper proposes and establishes a drilling test method for assessing the uniaxial compressive strength (UCS) of a roof. This method can be used to optimize the speed of drilling. Moreover, a mathematical model of the power output is developed for a roof-strata identification system with a drilling test system. The results were as follows: (1) the system was able to identify the uniaxial compressive strength of roof rock; (2) the pressure of the drill leg of the pneumatic bolt did not match the output power of the pneumatic motor, the pneumatic motor could not reach the maximum power point, and the insufficient thrust of the pneumatic leg led to failure of the maximum output power of the pneumatic motor; (3) to increase the output power of the air motor and thus improve the drilling speed, we applied a booster valve for the system. The experimental results show that the power of the air motor has a linear relationship with drilling speed. In this way, the speed of the drill can be increased by increasing the motor power.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fengnian Wang ◽  
Gan Li ◽  
Chi Liu

Through the establishment of structural mechanics model, this paper analyzes the fracture of super thick rock stratum. Through the model, it can be seen that the fracture of low-level super thick rock stratum produces large elastic energy release and dynamic load, which is easy to produce disasters such as rock burst. The numerical calculation shows that under the influence of low hard and thick rock stratum, the leading area of coal mine roadway will produce energy concentration, and the coal pillar will also produce energy accumulation. Thick rock stratum is in bending state and has large bending elasticity. Coal pillar has large compression elasticity, which is the main reason for rock burst. The accumulation of elastic properties of overburden and rock burst caused by coal pillar energy storage can be effectively controlled by using advanced presplitting blasting, coal seam drilling pressure relief, and strengthening support.


Author(s):  
Chenxi Zhao ◽  
Haoxuan Yu

According to our previous work, we have found that the ZigBee WSN technology and sensors are actually suitable for the underground monitoring, but there are still many problems. So in this viewpoint paper, we showed our viewpoint that the underground driver-less electric transport vehicles could also play an important role in the underground monitoring, that is, underground electric transport vehicles running in the mine roadway could carry mobile sensors to monitor the environmental conditions in the transport roadway. If it could be realized, it will save the number of sensors installed around the mine so as to reduce costs. If it could be realized, the monitoring of underground mines will become more convenient.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sen Yang ◽  
Xinzhu Hua ◽  
Xiao Liu ◽  
Chen Li

To determine the impact of influencing factors on unsupported roof stability in coal mine roadway, a mechanical model of the unsupported roof was built. FLAC 3D numerical simulation was utilized to study the stability of the unsupported roof under the influence of the depth of the roadway, the thickness of the roof, and the unsupported-support distance. In view of the key influencing factors, the geological conditions of the site, and the relationship between the tensile stress and tensile strength of the unsupported roof, the maximum unsupported roof distance during roadway excavation was determined. Considering the surplus safety factor of the unsupported roof, the reasonable unsupported roof distance during the excavation of roadway 150802 was finally determined to be 2.08 m. The comprehensive roadway excavation speed increased by 62.7%, achieving a monthly progress over 500 m.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hu Wen ◽  
Yin Liu ◽  
Jun Guo ◽  
Ze Zhang ◽  
Mingyang Liu ◽  
...  

High-temperature poisonous smoke produced by coal mine roadway fire seriously affects miners' lives and safety. Studying the development law of high-temperature smoke in the process of mine roadway fire and then exploring the danger of roadway are of great significance to personnel safety and post-disaster rescue. In order to study this problem, the CFD numerical simulation method is used to establish a fire calculation model based on ANSYS Fluent software in the development stage of mine fire. The high-temperature flue gas flow in the roadway during the development stage of mine fire is simulated, and the variation law of temperature field and gas concentration field with time and space position under different levels of roadway in the development stage of fire is revealed. The variation rules of environmental parameters, such as temperature, CO, and CO2, are obtained by numerical calculation. Based on these, the danger zones of smoke spread in fire development stage are divided by the critical values of high-temperature smoke and toxicity evaluation index, and the mathematical fitting analysis of the evolution of the dangerous area with time is carried out. The research results have certain theoretical guiding significance for reducing underground environmental pollution and ensuring the personal safety of workers and rescuers.


2021 ◽  
Author(s):  
Rafał Czarny ◽  
Michał Malinowski ◽  
Mateusz Ćwiękała ◽  
Sławomir Olechowski ◽  
Zbigniew Isakow ◽  
...  

2021 ◽  
Vol 11 (16) ◽  
pp. 7524
Author(s):  
Hainan Gao ◽  
Yubing Gao ◽  
Jiong Wang ◽  
Qiang Fu ◽  
Bowen Qiao ◽  
...  

The traditional gob-side entry-retaining mining method has problems such as difficulty in roof collapse and large deformation of the entry, which may affect the safety of mine production. In this study, we introduced a bidirectional blasting technology (BBT) to make the roof collapse smoothly and to improve the traditional gob-side entry-retaining mining method. A theoretical model of the BBT was established and the stress propagation of the BBT was analyzed by numerical simulation. The gob-side entry-retaining mining method was then applied in a composite sandstone roof condition. Compared with ordinary blasting, the concentrated stress and directional cracks can be generated in the set direction after using the BBT technology. Field monitoring data suggested that the deformation of the retained entry met the requirements of mining, verifying the effectiveness of the proposed technology for composite sandstone roof. The results of the study have an important significance in solving the high pressure and large deformation problems in the coal mine roadway and saving coal resources, which also provided a reference for similar geotechnical mines.


Sign in / Sign up

Export Citation Format

Share Document