scholarly journals Temperature Potential of the Seasonal Cooling Devices in the Work of Boiler-Plants

Author(s):  
L M Baisheva ◽  
V N Ivanov ◽  
A V Ivanova
Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 58
Author(s):  
Andraž Bradeško ◽  
Lovro Fulanović ◽  
Marko Vrabelj ◽  
Aleksander Matavž ◽  
Mojca Otoničar ◽  
...  

Despite the challenges of practical implementation, electrocaloric (EC) cooling remains a promising technology because of its good scalability and high efficiency. Here, we investigate the feasibility of an EC cooling device that couples the EC and electromechanical (EM) responses of a highly functionally, efficient, lead magnesium niobate ceramic material. We fabricated multifunctional cantilevers from this material and characterized their electrical, EM and EC properties. Two active cantilevers were stacked in a cascade structure, forming a proof-of-concept device, which was then analyzed in detail. The cooling effect was lower than the EC effect of the material itself, mainly due to the poor solid-to-solid heat transfer. However, we show that the use of ethylene glycol in the thermal contact area can significantly reduce the contact resistance, thereby improving the heat transfer. Although this solution is most likely impractical from the design point of view, the results clearly show that in this and similar cooling devices, a non-destructive, surface-modification method, with the same effectiveness as that of ethylene glycol, will have to be developed to reduce the thermal contact resistance. We hope this study will motivate the further development of multifunctional cooling devices.


2013 ◽  
Vol 738-739 ◽  
pp. 441-445
Author(s):  
Sergey Taskaev ◽  
Vasiliy D. Buchelnikov ◽  
Anatoliy Pellenen ◽  
Dmitriy Bataev ◽  
Konstantin Skokov ◽  
...  

In this work we investigate magnetocaloric effect and heat capacity of Gd cold rolled ribbons. Such materials are easy to produce, they are flexible and convenient for using in magnetic cooling devices. It is shown that the magnetocaloric effect is strongly dependent on thickness of the ribbons. Severely rolled ribbons demonstrate rather a small magnetocaloric effect. However, a special heat treatment procedure makes it possible to enhance the effect up to the value observed in polycrystalline Gd.


2000 ◽  
Vol 370 (1-2) ◽  
pp. 101-105 ◽  
Author(s):  
T Engelhard ◽  
E.D Jones ◽  
I Viney ◽  
Y Mastai ◽  
G Hodes

2021 ◽  
Author(s):  
Filippo Pavanello ◽  
Teresa Randazzo

<p>Do remittances improve how households adapt to global warming? We explore this question exploiting a nationally-representative household data from Mexico - a country that experiences a large flow of remittances. Mexican households respond to excess heat by purchasing air conditioning and remittances can be used to adopt and use cooling devices that contribute to maintaining thermal comfort at home. Our results show that recipient households have a higher probability to adopt air conditioning at home with important implication on electricity consumption. The effect is even larger for those households living in high-temperature areas showing an important role of remittances in the climate adaptation process.</p>


2017 ◽  
Vol 7 (3) ◽  
pp. 27
Author(s):  
Kyle B Davidson ◽  
Bahram Asiabanpour ◽  
Zaid Almusaied

The shortage of freshwater resources in the world has developed the need for sustainable, cost-effective technologies that can produce freshwater on a large scale. Current solutions often have extensive manufacturing requirements, or involve the use of large quantities of energy or toxic chemicals. Atmospheric water generating solutions that minimize the depletion of natural resources can be achieved by incorporating biomimetics, a classification of design inspired by nature. This research seeks to optimize thermoelectric cooling systems for use in water harvesting applications by analyzing the different factors that affect surface temperature and water condensation in TEC devices. Further experiments will be directed towards developing a robust, repeatable system, as well as an accurate measurement system. Surface modifications, device structure and orientation, and power generation will also be studied to better understand the ideal conditions for maximum water collection in thermoelectric cooling systems.


2005 ◽  
Author(s):  
B. Abramzon

The present study proposes the unified numerical approach to the problem of optimum design of the thermoelectric devices for cooling electronic components. The method is illustrated with several examples which are based on the standard mathematical model of a single-stage thermoelectric cooler with constant material properties. The model takes into account the thermal resistances from the hot and cold sides of the TEC. Values of the main physical parameters governing the TEC performance (Zeebeck coefficient, electrical resistance and thermal conductance) are derived from the manufacturer catalog data on the maximum achievable temperature difference, and the corresponding electric current and voltage. The independent variables for the optimization search are the number of the thermoelectric coolers, the electric current and the cold side temperature of the TEC. The additional independent variables in other cases are the number of thermoelectric couples and the height-to area ratio of the thermoelectric pellet. The objective for the optimization search is the maximum of the total cooling rate or maximum of COP. In the present study, the problems of optimum design of thermoelectric cooling devices are solved using the so-called Multistart Adaptive Random Search (MARS) method [16].


Sign in / Sign up

Export Citation Format

Share Document