scholarly journals Mechanical properties and self-cleaning mortar capacity C/A 1: 5 of Portland cement modified with titanium dioxide (TiO2)

Author(s):  
H Flores ◽  
G Bernuy ◽  
C Huerta
Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 357 ◽  
Author(s):  
Kamila Zając ◽  
Magdalena Janus ◽  
Antoni Morawski

In the study the self-cleaning properties of photoactive gypsum plasters are presented. The modified gypsum plasters were obtained by addition of 1 and 3 wt.% of nitrogen-modified titanium dioxide (TiO2/N) and 0.1, 0.3, and 0.5 wt.% of glass fiber. The self-cleaning ability of the obtained materials was tested during two dyes decomposition: Methylene Blue (MB) and Reactive Orange (RO). It was found that presence of glass fiber increased photocatalytic activity of modified gypsum plasters, which may be due to the fact glass fiber may act as ducts for light and transport it to sites screened by TiO2 or glass fiber can retard charge recombination. Moreover, unexpectedly the addition of glass fiber did not increase the mechanical properties of modified gypsum plasters, which may be because gypsum does not strongly adhere to the surface of glass fibers.


2016 ◽  
Vol 29 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Yunwu Yu ◽  
Wenhao Pan ◽  
Xiaoman Guo ◽  
Lili Gao ◽  
Yaxin Gu ◽  
...  

Poly(arylene ether sulfone) (PES)–titanium dioxide (TiO2) hybrid membranes were prepared via solution blending method using TiO2 nanoparticles as inorganic filler. The chemical structure and thermal stability of the matrix polymer were characterized by proton nuclear magnetic resonance, Fourier transform infrared, differential scanning calorimetry, and thermogravimetric analysis. The crystal structure, morphology, mechanical properties, and gas separation performance of hybrid membranes were characterized in detail. As shown in scanning electron microscopic images, TiO2 nanoparticles dispersed homogeneously in the matrix. Although the mechanical properties of hybrid membranes decreased certainly compared to the pure PES membranes, they are strong enough for gas separation in this study. All gas permeability coefficients of PES-TiO2 hybrid membranes were higher than pure PES membranes, attributed to the nanogap caused by TiO2 nanoparticles, for instance, oxygen and nitrogen permeability coefficients of Hybrid-3 (consists of PES with 4-amino-phenyl pendant group and hexafluoroisopropyl (Am-PES)-20 and TiO2 nanoparticles, 5 wt%) increased from 2.57 and 0.33 to 5.88 and 0.63, respectively. In addition, the separation factor increased at the same time attributed to the stimulative transfer effect caused by the interaction of hydroxyl groups on the TiO2 nanoparticle and polar carbon dioxide molecules.


Author(s):  
Hansaraj Dikkar ◽  
Varad Kapre ◽  
Amey Diwan ◽  
S.K. Sekar

2001 ◽  
Vol 10 (2) ◽  
pp. 096369350101000
Author(s):  
E. Alonso ◽  
L. Martvnez-Gomez ◽  
W. Martvnez ◽  
L. Villaseρor ◽  
V.M. Castapo

Portland cement concretes were prepared by adding different igneous materials from west central Mexico. The results of the mechanical testing of these materials show the feasibility of employing igneous minerals to produce concretes and mortars, provided a careful control of granulometry and the geochemistry involved is attained. The mechanical performance, as well as the workability of the slurries can be managed by the convenient use of commercial additives (i.e. water reducers and aging accelerators). These results open the attractive possibility of expanding the natural sources of concrete-forming elements.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Rivas-Vázquez L.P. ◽  
Suárez-Orduña R. ◽  
Valera-Zaragoza M. ◽  
Máas-Díaz A. De la L. ◽  
Ramírez-Vargas E.

ABSTRACTThe effects of waste polyethylene aggregate as admixture agent in Portland cement at different addition polyethylene/cement ratios from 0.0156 to 0.3903 were investigated. The reinforced samples were prepared according the ASTM C 150 Standard (samples of 5 × 5 × 5 cm). The reinforcing fibers were milling at a size of 1/25 in diameter, form waste and used them to evaluate the effects in mechanical properties in cement-based composites. The evaluation of polyethylene as additive was based on results of density and compression tests. The 28-day compressive strength of cement reforced with plastic waste at a replacement polyethylene/cement ratio of 0.0468 was 23.5 MPa compared to the control concrete (7.5 MPa). The density of cement replaced with polyethylene varies from 2.114 (0% polyethylene) to 1.83 g/cm3 by the influence of polyethylene.


2005 ◽  
Vol 35 (6) ◽  
pp. 1082-1087 ◽  
Author(s):  
Recep Boncukcuoğlu ◽  
Orhan İçelli ◽  
Salih Erzeneoğlu ◽  
M. Muhtar Kocakerim

Sign in / Sign up

Export Citation Format

Share Document