scholarly journals Cold flow simulation of an internal combustion engine with vertical valves using layering approach

Author(s):  
G Martinas ◽  
O S Cupsa ◽  
L C Stan ◽  
A Arsenie
2020 ◽  
Vol 10 (6) ◽  
pp. 87-95
Author(s):  
SMG Akele ◽  
C. Aganama ◽  
E. Emeka ◽  
Y. Abudu-Mimini ◽  
S. Umukoro ◽  
...  

In the early stages of development of internal combustion engine (ICE), limitations such as speed, range, and lifespan led to series of researches resulting in the reduction or elimination of these limitations. Combustion in ICE is a rapid and controlled endothermic reaction between air in oxygen and fuel which is accompanied by significant increase in temperature and pressure with the production of heat, flame and carbon particle deposits. This combustion process is a phenomenon that involves turbulence, loss of air-fuel mixture during inflow and outflow into the cylinder. The objection of this study is to perform port flow analysis on ICE to determine flow rate and swirl at different valve lift under stationary engine parts.Methodology employed to analyze and solve the ICE port flow simulation is the use of CFD software that uses the finite volume method of numerical analysis to solve the continuity, Navier-Stokes and energy equations governing the air medium in the internal combustion engine cylinder. The model geometry for the analysis was generated using the Ansys Design Modeller for one cylinder, one suction port and one exhaust port, and two valves. The domain considered is internal combustion engine suction port with 86741 nodes and 263155 elements. Study results revealed that air mass was more concentrated around the valve and inlet port cross-section with swirling motion seen, air stream experienced turbulence as it flowed downwards inside the cylinder, air stream spread was turbulent which will eventually enhance smooth combustion, swirling air stream moves towards the cylinder wall where it experienced tumbling and turbulent which will eventually enhance smooth combustion. From the simulation it was revealed that mass flow rate of inlet air increases with valve lift.


Author(s):  
S. Y. Ho ◽  
A. J. Przekwas

Abstract An advanced computational fluid dynamics package, REFLEQS, has been adapted to calculate the flow in the induction system of an internal combustion engine. Results of complex flow fields in multi-valve engine intake/exhaust ports and cylinders, including moving valves and piston, are calculated. The body-fitted structured grids generated with partial differential equations method have been applied to represent complex engine components configuration such as engine intake/exhaust ports, ducts, valves and cylinders. An upwind scheme combined with SIMPLEC method is employed to solve the Navier-Stokes equations. Several 2D and 3D flows in engine ports/cylinders are simulated. Complex flow fields involve separated flows near the entry of cylinder head, vortices near the corner and behind the valves and the valve/stem generated swirling and tumbling flows. The present work aims at establishing a generalized computational environment for analyzing the physical mechanisms and design parameters controlling internal flows in automotive air/fuel induction systems.


Author(s):  
Rao V. Arimilli ◽  
Kurt Erickson ◽  
Frederick T. Mottley ◽  
James C. Conklin

A revolutionary new concept internal-combustion engine called TurbX™ was invented and a prototype was built by an independent inventor, M. A. Wilson. Theoretically, the TurbX™ engine cycle can be represented by the Atkinson thermodynamic cycle with a continuous combustion process. Because of these attributes, this concept has the potential for higher fuel economy and power density relative to other internal combustion engine types. To evaluate the performance of this prototype, Oak Ridge National Laboratory and The University of Tennessee conducted an independent experimental study. Two series of tests were performed: cold-flow and fuel-fired tests. Cold-flow, compressed-air driven, tests were performed by pressurizing the combustion chamber with shop air to demonstrate the prototype performance of the turbine section. These results showed positive but unremarkable torque for combustion chamber air pressures above 300 kPa with a functional relationship illustrative of typical gas turbines with respect to shaft speed. The fuel-fired tests consisted of 26 constant-speed runs between 1800 and 9500 RPM. The experimental apparatus limited the maximum test speed to 9500 RPM. The TurbX™ engine produced no net output power for all fuel-fired tests conducted. The temperature measurements indicated that for most of the runs there was sustained combustion. However, even in runs where satisfactory combustion was observed, measured gage pressure inside the combustion chamber never exceeded 15.5 kPa. The lack of sufficient pressure rise inside the combustion chamber is indicative of excessive leakage of the combustion products through the preliminary prototype engine internals. Based on the results and the experience gained through this independent testing of this preliminary prototype, further development of this concept is recommended. Three major issues are specifically identified: 1) the internal components must be redesigned to reduce leakage, 2) combustion chamber design and 3) improve the overall aerodynamic performance of the engine internal components.


2015 ◽  
Author(s):  
Raniro de Oliveira Alvarenga Coelho ◽  
Roberto Ribeiro Schor ◽  
Robert Bento Florentino ◽  
Ramón Molina Valle ◽  
Rudolf Huebner

Sign in / Sign up

Export Citation Format

Share Document