scholarly journals Mathematical modeling of changes in temperature distribution during friction stir welding in massive samples

Author(s):  
R A Rzaev ◽  
A U Dzhalmukhambetov ◽  
O Yu Dergunova ◽  
L E Semenova
2016 ◽  
Vol 687 ◽  
pp. 155-162
Author(s):  
Piotr Lacki ◽  
Zygmunt Kucharczyk ◽  
Tomasz Walasek

In the paper, the influence of friction on temperature distribution in the friction spot stir welding process of titanium grade 2 is analysed. It is assumed that the friction coefficient may be a function of temperature or the relative speed of the contact areas. The finite element method is used in the numerical calculations. Temperature distributions and temperature versus time for the analysed friction coefficients are presented. The results also show that applying a proper frictional model is very essential for the sake of heat generation during friction stir welding.


2021 ◽  
Vol 1116 (1) ◽  
pp. 012080
Author(s):  
Bharat Singh ◽  
Shailesh Sharma ◽  
Veneet Kumar ◽  
Kunal Maheshwari ◽  
Piyush Singhal

Author(s):  
M. D. Bindu ◽  
P. S. Tide ◽  
A. B. Bhasi

A three dimensional computational fluid dynamics (CFD) model has been developed to study the effect of tool pin profile on the material flow and temperature development in friction stir welding (FSW) of high specific strength AA 7068 alloy. Numerical simulations were carried out using a RNG k-e turbulence model. Three tool pin profiles, viz. cylindrical, conical and straight cylindrical threaded were considered for the simulation. The temperature distribution and material flow pattern obtained from the simulation were compared for different pin profiles. Simulation results predicted Temperature distribution and material maxing was better in straight cylindrical tapered thread pin welds. Weld joints were fabricated using the straight cylindrical threaded pin with the same parametric combinations as in the simulation. Peak temperature measured in the experiment was less than that obtained by simulation. Hardness measurements taken at different weld regions has showed that about 71% of that of the base metal hardness is obtained with the threaded tool pin. The microstructure study revealed a defect free weld joint. Precipitates distributed in the microstructure indicate sufficient heat input to join the material without dissolving precipitates. The developed numerical model is helpful in optimising FSW process parameters.


Sign in / Sign up

Export Citation Format

Share Document