THz pulse train generation through ultrafast development of surface plasmon-polariton modulation instability

2021 ◽  
Author(s):  
Dmitry A Korobko ◽  
Igor O. Zolotovskii ◽  
Sergey Moiseev ◽  
Alexei S. Kadochkin ◽  
Vyacheslav Svetukhin

Abstract Propagation of high-intensity electromagnetic waves in a waveguide structure could initiate nonlinear effects resulting in drastic changes of their spatial and temporal characteristics. We study the modulation instability effect induced by propagation of surface plasmon polaritons in a silver thin-film waveguide. The nonlinear Schrodinger equation for propagating surface plasmon wave is obtained. It is shown numerically that the modulation instability effect can give rise to ultrafast spatial redistribution and longitudinal localization of surface plasmon-polariton wave energy in subwavelength scale. The dependence of plasmon wave dispersion and nonlinear characteristics on metal film thickness is considered. We demonstrate that the use of films with the thickness varying along the waveguide length allows reduction of the generated pulse width and increase of frequency comb bandwidth. The proposed technique is promising for design of ultra-compact (tens of nm) optical generators delivering pulse trains with the repetition rate higher than 1THz.

2016 ◽  
Vol 529 (3) ◽  
pp. 1600167 ◽  
Author(s):  
Sergey G. Moiseev ◽  
Dmitry A. Korobko ◽  
Igor O. Zolotovskii ◽  
Andrei A. Fotiadi

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2156
Author(s):  
Shunli Li ◽  
Qiuyi Zhang ◽  
Jinlun Li ◽  
Hongxin Zhao ◽  
Xiaoxing Yin ◽  
...  

Direction finding and target tracking make demanding requirements on the measurement of incoming angles of electromagnetic waves. A monopulse antenna, based on the singular symmetric spoof surface plasmon polariton (SSPP) structure, is proposed for high-accuracy angle sensing. The singular SSPP structure is composed of periodic corrugated grooves for the confinement of the electromagnetic fields. Due to the microstrip–coplanar waveguide transition, the fields along both sides of the SSPP add constructively to form the endfire beam at the sum port and destructively to form the null radiation in the endfire direction at the difference port. An optimization based on the team progress algorithm is adopted to facilitate this antenna design. A prototype is designed and fabricated to validate the design principle, and measured results agree with the simulation. The proposed antenna shows a wide bandwidth ranging from 5.0 GHz to 7.5 GHz for both the sum and difference ports with the return loss greater than 10 dB, realizing a relative bandwidth of 40%. The isolation for the sum and difference ports is higher than 21 dB, and the null depth is larger than 20 dB over the entire operating range, which is favorable for the high accuracy angle sensing and measurement. This monopulse antenna has broad prospect in angle measuring systems such as direction finding and radar tracking scenes.


Author(s):  
Igor Minin

It is well-known that surface plasmon wave propagates along a straight line, but this common sense was broken by the artificial curved light – plasmon Airy beam. In this paper, we introduce a new class of curved surface plasmon wave - the photonic hook plasmon. It propagates along wavelength scaled curved trajectory with radius less than surface plasmon polariton wavelength, and can exist despite the strong energy dissipation at the metal surface.


Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3965-3975 ◽  
Author(s):  
Dmitry Yu. Fedyanin ◽  
Alexey V. Krasavin ◽  
Aleksey V. Arsenin ◽  
Anatoly V. Zayats

AbstractPlasmonics offers a unique opportunity to break the diffraction limit of light and bring photonic devices to the nanoscale. As the most prominent example, an integrated nanolaser is a key to truly nanoscale photonic circuits required for optical communication, sensing applications and high-density data storage. Here, we develop a concept of an electrically driven subwavelength surface-plasmon-polariton nanolaser, which is based on a novel amplification scheme, with all linear dimensions smaller than the operational free-space wavelength λ and a mode volume of under λ3/30. The proposed pumping approach is based on a double-heterostructure tunneling Schottky barrier diode and gives the possibility to reduce the physical size of the device and ensure in-plane emission so that the nanolaser output can be naturally coupled to a plasmonic or nanophotonic waveguide circuitry. With the high energy efficiency (8% at 300 K and 37% at 150 K), the output power of up to 100 μW and the ability to operate at room temperature, the proposed surface plasmon polariton nanolaser opens up new avenues in diverse application areas, ranging from ultrawideband optical communication on a chip to low-power nonlinear photonics, coherent nanospectroscopy, and single-molecule biosensing.


Sign in / Sign up

Export Citation Format

Share Document