Feature extraction and neural network-based multi-peak analysis on time-correlated LiDAR histograms

2022 ◽  
Author(s):  
Gongbo Chen ◽  
Felix Landmeyer ◽  
Christian Wiede ◽  
Rainer Kokozinski

Abstract Time correlated single photon counting (TCSPC) is a statistical method to generate time-correlated histograms (TC-Hists), which are based on the time-of-flight (TOF) information measured by photon detectors such as single-photon avalanche diodes. With restricted measurements per histogram and the presence of high background light, it is challenging to obtain the target distance in a TC-Hist. In order to improve the data processing robustness under these conditions, the concept of machine learning is applied to the TC-Hist. Using the neural network-based multi-peak analysis (NNMPA), introduced by us, including a physics-guided feature extraction, a neural network multi-classifier, and a distance recovery process, the analysis is focused on a small amount of critical features in the TC-Hist. Based on these features, possible target distances with correlated certainty values are inferred. Furthermore, two optimization approaches regarding the learning ability and real-time performance are discussed. In particular, variants of the NNMPA are evaluated on both synthetic and real datasets. The proposed method not only has higher robustness in allocating the coarse position (±5 %) of the target distance in harsh conditions, but also is faster than the classical digital processing with an average-filter. Thus, it can be applied to improve the system robustness, especially in the case of high background light and middle-range detections.

2016 ◽  
Vol 43 (6) ◽  
pp. 0604001
Author(s):  
沈姗姗 Shen Shanshan ◽  
陈钱 Chen Qian ◽  
曹芳 Cao Fang ◽  
何伟基 He Weiji ◽  
顾国华 Gu Guohua

Author(s):  
Nicholas C. Lantz ◽  
Jennifer N. Downey ◽  
Brian E. Vyhnalek ◽  
Sarah A. Tedder

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4338 ◽  
Author(s):  
Maik Beer ◽  
Jan Haase ◽  
Jennifer Ruskowski ◽  
Rainer Kokozinski

Light detection and ranging (LiDAR) systems based on silicon single-photon avalanche diodes (SPAD) offer several advantages, like the fabrication of system-on-chips with a co-integrated detector and dedicated electronics, as well as low cost and high durability due to well-established CMOS technology. On the other hand, silicon-based detectors suffer from high background light in outdoor applications, like advanced driver assistance systems or autonomous driving, due to the limited wavelength range in the infrared spectrum. In this paper we present a novel method based on the adaptive adjustment of photon coincidence detection to suppress the background light and simultaneously improve the dynamic range. A major disadvantage of fixed parameter coincidence detection is the increased dynamic range of the resulting event rate, allowing good measurement performance only at a specific target reflectance. To overcome this limitation we have implemented adaptive photon coincidence detection. In this technique the parameters of the photon coincidence detection are adjusted to the actual measured background light intensity, giving a reduction of the event rate dynamic range and allowing the perception of high dynamic scenes. We present a 192 × 2 pixel CMOS SPAD-based LiDAR sensor utilizing this technique and accompanying outdoor measurements showing the capability of it. In this sensor adaptive photon coincidence detection improves the dynamic range of the measureable target reflectance by over 40 dB.


Author(s):  
Mike Bruce ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
David Bethke ◽  
J.M. Chin

Abstract For time resolved hot carrier emission from the backside, an alternate approach is demonstrated termed single point PICA. The single point approach records time resolved emission from an individual transistor using time-correlated-single-photon counting and an avalanche photo-diode. The avalanche photo-diode has a much higher quantum efficiency than micro-channel plate photo-multiplier tube based imaging cameras typically used in earlier approaches. The basic system is described and demonstrated from the backside on a ring oscillator circuit.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5287
Author(s):  
Hiwa Mahmoudi ◽  
Michael Hofbauer ◽  
Bernhard Goll ◽  
Horst Zimmermann

Being ready-to-detect over a certain portion of time makes the time-gated single-photon avalanche diode (SPAD) an attractive candidate for low-noise photon-counting applications. A careful SPAD noise and performance characterization, however, is critical to avoid time-consuming experimental optimization and redesign iterations for such applications. Here, we present an extensive empirical study of the breakdown voltage, as well as the dark-count and afterpulsing noise mechanisms for a fully integrated time-gated SPAD detector in 0.35-μm CMOS based on experimental data acquired in a dark condition. An “effective” SPAD breakdown voltage is introduced to enable efficient characterization and modeling of the dark-count and afterpulsing probabilities with respect to the excess bias voltage and the gating duration time. The presented breakdown and noise models will allow for accurate modeling and optimization of SPAD-based detector designs, where the SPAD noise can impose severe trade-offs with speed and sensitivity as is shown via an example.


Sign in / Sign up

Export Citation Format

Share Document