scholarly journals SIMULTANEOUS MODELING OF THE STELLAR AND DUST EMISSION IN DISTANT GALAXIES: IMPLICATIONS FOR STAR FORMATION RATE MEASUREMENTS

2014 ◽  
Vol 783 (2) ◽  
pp. L30 ◽  
Author(s):  
Dyas Utomo ◽  
Mariska Kriek ◽  
Ivo Labbé ◽  
Charlie Conroy ◽  
Mattia Fumagalli
2015 ◽  
Vol 11 (A29B) ◽  
pp. 178-179
Author(s):  
Giovanni Natale ◽  
Cristina C. Popescu ◽  
Richard. J. Tuffs ◽  
Victor P. Debattista ◽  
Jörg Fischera ◽  
...  

AbstractA major difficulty hampering the accuracy of UV/optical star formation rate tracers is the effect of interstellar dust, absorbing and scattering light produced by both young and old stellar populations (SPs). Although empirically calibrated corrections or energy balance SED fitting are often used for fast de-reddening of galaxy stellar emission, eventually only radiative transfer calculations can provide self-consistent predictions of galaxy model spectra, taking into account important factors such as galaxy inclination, different morphological components, non-local heating of the dust and scattered radiation. In addition, dust radiative transfer can be used to determine the fraction of monochromatic dust emission powered by either young or old SPs. This calculation needs to take into account the different response of the dust grains to the UV and optical radiation field, depending on the grain size and composition. We determined the dust heating fractions, on both global and local scales, for a high-resolution galaxy model by using our 3D ray-tracing dust radiative transfer code “DART-Ray”. We show the results obtained using this method and discuss the consequences for star formation rate indicators.


2018 ◽  
Vol 853 (2) ◽  
pp. 172 ◽  
Author(s):  
Daizhong Liu ◽  
Emanuele Daddi ◽  
Mark Dickinson ◽  
Frazer Owen ◽  
Maurilio Pannella ◽  
...  

2001 ◽  
Vol 204 ◽  
pp. 415-415
Author(s):  
H. Hirashita ◽  
A. K. Inoue ◽  
H. Kamaya

Infrared (IR) emission from Galactic dust is frequently used as an indicator of the star formation rate (SFR). Recently, A. K. Inoue, H. Hirashita, & H. Kamaya derived a formula for conversion from the IR luminosity to the SFR based on a physical model of H II regions (PASJ, 52, 539, 2000). They expressed this as SFR/(M⊙ yr−1) = {1.1 x 10-10(1-η)/(0.4–0.22f+0.6∊)}(LIR/L⊙), where f is the fraction of ionizing photons absorbed by hydrogen, ∊ is the efficiency of dust absorption for non-ionizing photons, η is the cirrus fraction of the observed dust luminosity, and LIR is the observed luminosity of dust emission. Since f depends on the dust-to-gas ratio and the dust-to-gas ratio is related to metallicity, we present the dependence of the formula on metallicity.Our metallicity-dependent conversion formula is applied to the cosmic star formation history. Based on a recent model of the cosmic star formation history and metal enrichment history, we find that the photons from OB stars are not efficiently reprocessed in the IR before z ~ 3 because of a low dust-to-gas ratio. This indicates that the star formation rate estimated from the submillimeter luminosity using an empirical formula is significantly underestimated (by at least a factor of 3).


2016 ◽  
Vol 11 (S322) ◽  
pp. 123-128 ◽  
Author(s):  
C. Federrath ◽  
J. M. Rathborne ◽  
S. N. Longmore ◽  
J. M. D. Kruijssen ◽  
J. Bally ◽  
...  

AbstractStar formation in the Galactic disc is primarily controlled by gravity, turbulence, and magnetic fields. It is not clear that this also applies to star formation near the Galactic Centre. Here we determine the turbulence and star formation in the CMZ cloud G0.253+0.016. Using maps of 3 mm dust emission and HNCO intensity-weighted velocity obtained with ALMA, we measure the volume-density variance σρ /ρ 0=1.3±0.5 and turbulent Mach number $\mathcal{M}$ = 11±3. Combining these with turbulence simulations to constrain the plasma β = 0.34±0.35, we reconstruct the turbulence driving parameter b=0.22±0.12 in G0.253+0.016. This low value of b indicates solenoidal (divergence-free) driving of the turbulence in G0.253+0.016. By contrast, typical clouds in the Milky Way disc and spiral arms have a significant compressive (curl-free) driving component (b > 0.4). We speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this may reduce the star formation rate by a factor of 7 compared to nearby clouds.


2019 ◽  
Vol 15 (S352) ◽  
pp. 205-209
Author(s):  
Georgios E. Magdis

AbstractWe have entered an era where the gas mass estimates of distant galaxies do not rely on a single tracer but rather on an inventory of different and independent methods, much like the case for the determination of the star formation rate (SFR) of the galaxies. This is crucial as the traditional Mgas tracers, i.e. low-J CO transition lines and dust continuum emission are becoming highly uncertain as we move to higher redshifts due to metallicity and CMB effects. Here, we present a homogeneous and statistically significant investigation of the use of atomic carbon as an alternative Mgas tracer (Valentino et al.2018) and provide evidence of optically thick far-IR emission in high−z starbursts that point towards higher dust temperatures and lower dust and gas mass estimates than previously inferred (Cortzen et al.2019, submitted). Finally, we present direct observations of the effect of the CMB on the far-IR SEDs of high-z SBs, manifested by unphyscally large (β = 2.5–3.5) apparent spectral indexes in R-J tail (Jin et al. 2019, submitted).


2014 ◽  
Vol 781 (1) ◽  
pp. 34 ◽  
Author(s):  
Valentino González ◽  
Rychard Bouwens ◽  
Garth Illingworth ◽  
Ivo Labbé ◽  
Pascal Oesch ◽  
...  

2011 ◽  
Vol 7 (S284) ◽  
pp. 218-220
Author(s):  
Myriam A. Rodrigues ◽  
François Hammer ◽  
Mathieu Puech

AbstractIn starburst galaxies, the light emitted by the young and massive stars dominates the photon budget along most of the SED and hides the old and intermediate stellar populations. The fraction of old stars and the stellar mass are systematically underestimated by current methods (Wuyts et al. (2009)). We have implemented a new method to retrieve stellar masses and stellar populations in distant galaxies from photometry and spectral features. The method uses a complex SFH description and a new constraint has been introduced: the star-formation rate (SFR).


2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


Sign in / Sign up

Export Citation Format

Share Document