scholarly journals The link between solenoidal turbulence and slow star formation in G0.253+0.016

2016 ◽  
Vol 11 (S322) ◽  
pp. 123-128 ◽  
Author(s):  
C. Federrath ◽  
J. M. Rathborne ◽  
S. N. Longmore ◽  
J. M. D. Kruijssen ◽  
J. Bally ◽  
...  

AbstractStar formation in the Galactic disc is primarily controlled by gravity, turbulence, and magnetic fields. It is not clear that this also applies to star formation near the Galactic Centre. Here we determine the turbulence and star formation in the CMZ cloud G0.253+0.016. Using maps of 3 mm dust emission and HNCO intensity-weighted velocity obtained with ALMA, we measure the volume-density variance σρ /ρ 0=1.3±0.5 and turbulent Mach number $\mathcal{M}$ = 11±3. Combining these with turbulence simulations to constrain the plasma β = 0.34±0.35, we reconstruct the turbulence driving parameter b=0.22±0.12 in G0.253+0.016. This low value of b indicates solenoidal (divergence-free) driving of the turbulence in G0.253+0.016. By contrast, typical clouds in the Milky Way disc and spiral arms have a significant compressive (curl-free) driving component (b > 0.4). We speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this may reduce the star formation rate by a factor of 7 compared to nearby clouds.

2019 ◽  
Vol 487 (4) ◽  
pp. 5799-5812 ◽  
Author(s):  
J I Read ◽  
D Erkal

ABSTRACT We introduce a novel abundance matching technique that produces a more accurate estimate of the pre-infall halo mass, M200, for satellite galaxies. To achieve this, we abundance match with the mean star formation rate, averaged over the time when a galaxy was forming stars, 〈SFR〉, instead of the stellar mass, M∗. Using data from the Sloan Digital Sky Survey, the GAMA survey and the Bolshoi simulation, we obtain a statistical 〈SFR〉−M200 relation in Λ cold dark matter. We then compare the pre-infall halo mass, $M^{\rm abund}_{200}$, derived from this relation with the pre-infall dynamical mass, $M^{\rm dyn}_{200}$, for 21 nearby dSph and dIrr galaxies, finding a good agreement between the two. As a first application, we use our new 〈SFR〉−M200 relation to empirically measure the cumulative mass function of a volume-complete sample of bright Milky Way satellites within 280 kpc of the Galactic centre. Comparing this with a suite of cosmological ‘zoom’ simulations of Milky Way-mass haloes that account for subhalo depletion by the Milky Way disc, we find no missing satellites problem above M200 ∼ 109 M⊙ in the Milky Way. We discuss how this empirical method can be applied to a larger sample of nearby spiral galaxies.


2012 ◽  
Vol 8 (S292) ◽  
pp. 333-333
Author(s):  
Steven N. Longmore

AbstractRecent surface- and volume-density star formation relations have been proposed which potentially unify our understanding of how gas is converted into stars, from the nearest star forming regions to ultra-luminous infrared galaxies. The inner 500 pc of our Galaxy – the Central Molecular Zone – contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of these star-formation prescriptions can be tested.We have used recently-available data from HOPS, MALT90 and HiGAL at wavelengths where the Galaxy is transparent, to find the dense, star-forming molecular gas across the Milky Way [Longmore et al. (2012a), Longmore et al. (2012b)]. We use water and methanol maser emission to trace star formation activity within the last 105 years and 30 GHz radio continuum emission from the Wilkinson Microwave Anisotropy Satellite (WMAP) to estimate the high-mass star formation rate averaged over the last ∼ 4 × 106 years.We find the dense gas distribution is dominated by the very bright and spatially-extended emission within a few degrees of the Galactic centre [Purcell et al. (2012)]. This region accounts for ∼80% of the NH3(1,1) integrated intensity but only contains 4% of the survey area. However, in stark contrast, the distribution of star formation activity tracers is relatively uniform across the Galaxy.To probe the dense gas vs SFR relationship towards the Galactic centre region more quantitatively, we compared the HiGAL column density maps to the WMAP-derived SFR across the same region. The total mass and SFR derived using these methods agree well with previous values in the literature. The main conclusion from this analysis is that both the column-density threshold and volumetric SF relations over-predict the SFR by an order of magnitude given the reservoir of dense gas available to form stars. The region 1° < l < 3.5°, |b| < 0.5° is particular striking in this regard. It contains ∼107 M⊙ of dense molecular gas — enough to form 1000 Orion-like clusters — but the present-day star formation rate within this gas is only equivalent to that in Orion. This implication of this result is that any universal column/volume density relations must be a necessary but not sufficient condition for SF to occur.Understanding why such large reservoirs of dense gas deviate from commonly assumed SF relations is of fundamental importance and may help in the quest to understand SF in more extreme (dense) environments, like those found in interacting galaxies and at earlier epochs of the Universe.


2011 ◽  
Vol 7 (S284) ◽  
pp. 379-381
Author(s):  
Walter J. Macie ◽  
Helio J. Rocha-Pinto ◽  
Roberto D. D. Costa

AbstractThe star formation rate (SFR) is still a poorly known characteristic of the Milky Way, especially concerning the possibility of an irregular SFR, compared to a constant rate. Some recent results based on the distribution of dwarf stars with chromospheric ages suggest at least two major bursts in the past 10 Gyr, while other investigations are consistent with an approximately constant SFR. The SFR also shows important spatial variations, particularly concerning the radial variations along the galactic disc. In this work, we investigate two different problems relative to the galactic SFR: (i) We estimate the star formation rate in the galactic disc based on the age distribution of the planetary nebula central stars (CSPN), and compare these results with previous investigations based on dwarf stars. The CSPN ages were derived on the basis of five different methods, involving the observed nebular metallicities and kinematical properties; (ii) We derive radial abundance gradients from several elements in planetary nebulae, and compare these results with recent determinations based on younger objects, such as HII regions and cepheid variables. Since the gradients are linked to the formation process of the galactic disc, we can estimate the spatial variation of the SFR. Preliminary results indicate that at least one major star formation burst is obtained, as well as a relatively smooth variation of the SFR along the galactocentric radius.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 178-179
Author(s):  
Giovanni Natale ◽  
Cristina C. Popescu ◽  
Richard. J. Tuffs ◽  
Victor P. Debattista ◽  
Jörg Fischera ◽  
...  

AbstractA major difficulty hampering the accuracy of UV/optical star formation rate tracers is the effect of interstellar dust, absorbing and scattering light produced by both young and old stellar populations (SPs). Although empirically calibrated corrections or energy balance SED fitting are often used for fast de-reddening of galaxy stellar emission, eventually only radiative transfer calculations can provide self-consistent predictions of galaxy model spectra, taking into account important factors such as galaxy inclination, different morphological components, non-local heating of the dust and scattered radiation. In addition, dust radiative transfer can be used to determine the fraction of monochromatic dust emission powered by either young or old SPs. This calculation needs to take into account the different response of the dust grains to the UV and optical radiation field, depending on the grain size and composition. We determined the dust heating fractions, on both global and local scales, for a high-resolution galaxy model by using our 3D ray-tracing dust radiative transfer code “DART-Ray”. We show the results obtained using this method and discuss the consequences for star formation rate indicators.


2010 ◽  
Vol 6 (S270) ◽  
pp. 467-474 ◽  
Author(s):  
Eve C. Ostriker

AbstractStar formation depends on the available gaseous “fuel” as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.


2018 ◽  
Vol 853 (2) ◽  
pp. 172 ◽  
Author(s):  
Daizhong Liu ◽  
Emanuele Daddi ◽  
Mark Dickinson ◽  
Frazer Owen ◽  
Maurilio Pannella ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 215
Author(s):  
Caitlin M. Casey ◽  
Jorge A. Zavala ◽  
Sinclaire M. Manning ◽  
Manuel Aravena ◽  
Matthieu Béthermin ◽  
...  

Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2 at 2 mm. Twelve of 13 detections above 5σ are attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of 〈 z 2 mm 〉 = 3.6 − 0.3 + 0.4 primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources at z > 3 and 38% ± 12% of sources at z > 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z < 3) are far more numerous than those at z > 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300 M ⊙ yr−1 and a relative rarity of ∼10−5 Mpc−3 contribute ∼30% to the integrated star formation rate density at 3 < z < 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies at z > 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with 〈 β 〉 = 2.2 − 0.4 + 0.5 . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies.


2001 ◽  
Vol 204 ◽  
pp. 415-415
Author(s):  
H. Hirashita ◽  
A. K. Inoue ◽  
H. Kamaya

Infrared (IR) emission from Galactic dust is frequently used as an indicator of the star formation rate (SFR). Recently, A. K. Inoue, H. Hirashita, & H. Kamaya derived a formula for conversion from the IR luminosity to the SFR based on a physical model of H II regions (PASJ, 52, 539, 2000). They expressed this as SFR/(M⊙ yr−1) = {1.1 x 10-10(1-η)/(0.4–0.22f+0.6∊)}(LIR/L⊙), where f is the fraction of ionizing photons absorbed by hydrogen, ∊ is the efficiency of dust absorption for non-ionizing photons, η is the cirrus fraction of the observed dust luminosity, and LIR is the observed luminosity of dust emission. Since f depends on the dust-to-gas ratio and the dust-to-gas ratio is related to metallicity, we present the dependence of the formula on metallicity.Our metallicity-dependent conversion formula is applied to the cosmic star formation history. Based on a recent model of the cosmic star formation history and metal enrichment history, we find that the photons from OB stars are not efficiently reprocessed in the IR before z ~ 3 because of a low dust-to-gas ratio. This indicates that the star formation rate estimated from the submillimeter luminosity using an empirical formula is significantly underestimated (by at least a factor of 3).


2013 ◽  
Vol 9 (S303) ◽  
pp. 61-65
Author(s):  
John S. Gallagher ◽  
Tova M. Yoast-Hull ◽  
Ellen G. Zweibel

AbstractThe Milky Way appears as a typical barred spiral, and comparisons can be made between its nuclear region and those of structurally similar nearby spirals. Maffei 2, M83, IC 342 and NGC 253 are nearby systems whose nuclear region properties contrast with those of the Milky Way. Stellar masses derived from NIR photometery, molecular gas masses and star formation rates allow us to assess the evolutionary states of this set of nuclear regions. These data suggest similarities between nuclear regions in terms of their stellar content while highlighting significant differences in current star formation rates. In particular current star formation rates appear to cover a larger range than expected based on the molecular gas masses. This behavior is consistent with nuclear region star formation experiencing episodic variations. Under this hypothesis the Milky Way's nuclear region currently may be in a low star formation rate phase.


2019 ◽  
Vol 489 (4) ◽  
pp. 5030-5036 ◽  
Author(s):  
Amelia Fraser-McKelvie ◽  
Michael Merrifield ◽  
Alfonso Aragón-Salamanca

ABSTRACT The Milky Way has been described as an anaemic spiral, but is its star formation rate (SFR) unusually low when compared to its peers? To answer this question, we define a sample of Milky Way analogues (MWAs) based on stringent cuts on the best literature estimates of non-transient structural features for the Milky Way. This selection yields only 176 galaxies from the whole of the SDSS DR7 spectroscopic sample which have morphological classifications in Galaxy Zoo 2, from which we infer SFRs from two separate indicators. The mean SFRs found are $\log (\rm {SFR}_{SED}/\rm {M}_{\odot }~\rm {yr}^{-1})=0.53$ with a standard deviation of 0.23 dex from SED fits, and $\log (\rm {SFR}_{W4}/\rm {M}_{\odot }~\rm {yr}^{-1})=0.68$ with a standard deviation of 0.41 dex from a mid-infrared calibration. The most recent estimate for the Milky Way’s SFR of $\log (\rm {SFR}_{MW}/\rm {M}_{\odot }~\rm {yr}^{-1})=0.22$ fits well within 2$\sigma$ of these values, where $\sigma$ is the standard deviation of each of the SFR indicator distributions. We infer that the Milky Way, while being a galaxy with a somewhat low SFR, is not unusual when compared to similar galaxies.


Sign in / Sign up

Export Citation Format

Share Document